BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31969710)

  • 21. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence.
    Taylor VL; Fitzpatrick AD; Islam Z; Maxwell KL
    Adv Virus Res; 2019; 103():1-31. PubMed ID: 30635074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.
    Landsberger M; Gandon S; Meaden S; Rollie C; Chevallereau A; Chabas H; Buckling A; Westra ER; van Houte S
    Cell; 2018 Aug; 174(4):908-916.e12. PubMed ID: 30033365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation.
    Nawel Z; Rima O; Amira B
    Microb Pathog; 2022 Apr; 165():105490. PubMed ID: 35307601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and life-history traits associated with the distribution of prophages in bacteria.
    Touchon M; Bernheim A; Rocha EP
    ISME J; 2016 Nov; 10(11):2744-2754. PubMed ID: 27015004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. More Evidence of Collusion: a New Prophage-Mediated Viral Defense System Encoded by Mycobacteriophage Sbash.
    Gentile GM; Wetzel KS; Dedrick RM; Montgomery MT; Garlena RA; Jacobs-Sera D; Hatfull GF
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AcaFinder: Genome Mining for Anti-CRISPR-Associated Genes.
    Yang B; Zheng J; Yin Y
    mSystems; 2022 Dec; 7(6):e0081722. PubMed ID: 36413017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh.
    Naser IB; Hoque MM; Nahid MA; Tareq TM; Rocky MK; Faruque SM
    Sci Rep; 2017 Nov; 7(1):14880. PubMed ID: 29093571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phage gene expression and host responses lead to infection-dependent costs of CRISPR immunity.
    Meaden S; Capria L; Alseth E; Gandon S; Biswas A; Lenzi L; van Houte S; Westra ER
    ISME J; 2021 Feb; 15(2):534-544. PubMed ID: 33011743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phage as agents of lateral gene transfer.
    Canchaya C; Fournous G; Chibani-Chennoufi S; Dillmann ML; Brüssow H
    Curr Opin Microbiol; 2003 Aug; 6(4):417-24. PubMed ID: 12941415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Legionella pneumophila CRISPR-Cas Suggests Recurrent Encounters with One or More Phages in the Family
    Deecker SR; Urbanus ML; Nicholson B; Ensminger AW
    Appl Environ Microbiol; 2021 Aug; 87(17):e0046721. PubMed ID: 34132590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research progress of prophages.
    Chen X; Wei Y; Ji X
    Yi Chuan; 2021 Mar; 43(3):240-248. PubMed ID: 33724208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes.
    Osuna BA; Karambelkar S; Mahendra C; Christie KA; Garcia B; Davidson AR; Kleinstiver BP; Kilcher S; Bondy-Denomy J
    Cell Host Microbe; 2020 Jul; 28(1):31-40.e9. PubMed ID: 32325050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas phage defense systems and prophages in Candidatus Accumulibacter.
    Deng X; Yuan J; Chen L; Chen H; Wei C; Nielsen PH; Wuertz S; Qiu G
    Water Res; 2023 May; 235():119906. PubMed ID: 37004306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecology and evolution of phages encoding anti-CRISPR proteins.
    Pons BJ; van Houte S; Westra ER; Chevallereau A
    J Mol Biol; 2023 Apr; 435(7):167974. PubMed ID: 36690071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs.
    Camara-Wilpert S; Mayo-Muñoz D; Russel J; Fagerlund RD; Madsen JS; Fineran PC; Sørensen SJ; Pinilla-Redondo R
    Nature; 2023 Nov; 623(7987):601-607. PubMed ID: 37853129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repeated outbreaks drive the evolution of bacteriophage communication.
    Doekes HM; Mulder GA; Hermsen R
    Elife; 2021 Jan; 10():. PubMed ID: 33459590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
    Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR
    Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of integrated prophages and CRISPR-Cas system in Bacillus subtilis RS10 genome.
    Iqbal S; Begum F
    Braz J Microbiol; 2024 Mar; 55(1):537-542. PubMed ID: 38216797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of prophages to evolution and virulence of bacterial pathogens.
    Fortier LC; Sekulovic O
    Virulence; 2013 Jul; 4(5):354-65. PubMed ID: 23611873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The functional aspects of bacterial CRISPR-cas systems and interactions between phages and its bacterial hosts--a review].
    Fu Q; Sun J; Yan Y
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):251-7. PubMed ID: 26065266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.