These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31969888)

  • 1. On the Way to Mars-Flagellated Algae in Bioregenerative Life Support Systems Under Microgravity Conditions.
    Häder DP
    Front Plant Sci; 2019; 10():1621. PubMed ID: 31969888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing crops for space explorers on the moon, Mars, or in space.
    Salisbury FB
    Adv Space Biol Med; 1999; 7():131-62. PubMed ID: 10660775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].
    Bluem V; Paris F
    Acta Astronaut; 2001; 48(5-12):287-97. PubMed ID: 11858270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.
    Fu Y; Li L; Xie B; Dong C; Wang M; Jia B; Shao L; Dong Y; Deng S; Liu H; Liu G; Liu B; Hu D; Liu H
    Astrobiology; 2016 Dec; 16(12):925-936. PubMed ID: 27912029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.
    Blum V
    Adv Space Res; 2003; 31(7):1683-91. PubMed ID: 14503506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel laboratory approaches to multi-purpose aquatic bioregenerative closed-loop food production systems.
    Blum V; Andriske M; Kreuzberg K; Paassen U; Schreibman MP; Voeste D
    Acta Astronaut; 1998; 42(1-8):25-35. PubMed ID: 11541608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C.E.B.A.S.-AQUARACK project: the Mini-Module as tool in artificial ecosystem research.
    Blum V; Stretzke E; Kreuzberg K
    Acta Astronaut; 1994 Jul; 33():167-77. PubMed ID: 11539518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioregenerative [correction of bioregnerative] life support: not a picnic.
    Knott WM
    Gravit Space Biol Bull; 1998 May; 11(2):31-9. PubMed ID: 11540636
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Häder DP; Hemmersbach R
    Life (Basel); 2022 Sep; 12(10):. PubMed ID: 36294957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8.
    Nasir A; Strauch SM; Becker I; Sperling A; Schuster M; Richter PR; Weißkopf M; Ntefidou M; Daiker V; An YA; Li XY; Liu YD; Lebert M
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():113-9. PubMed ID: 23926886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis.
    Kitaya Y; Azuma H; Kiyota M
    Adv Space Res; 2005; 35(9):1584-8. PubMed ID: 16175686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications.
    Niederwieser T; Kociolek P; Klaus D
    Life Sci Space Res (Amst); 2018 Feb; 16():8-17. PubMed ID: 29475523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Closed Equilibrated Biological Aquatic System: general concept and aspects of botanical research.
    Blum V; Hollander-Czytko H; Voeste D
    Planta; 1997 Sep; 203(Suppl 1):S201-8. PubMed ID: 11540326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C.E.B.A.S., a closed equilibrated biological aquatic system as a possible precursor for a long-term life support system?
    Blüm V
    Adv Space Res; 1992; 12(5):193-204. PubMed ID: 11537064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal protein production modules in biological life support systems: novel combined aquaculture techniques based on the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.).
    Blum V; Andriske M; Kreuzberg K; Schreibman MP
    Acta Astronaut; 1995; 36(8-12):615-23. PubMed ID: 11540996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of bioregenerative life-support systems in a manned future in space.
    Mitchell CA
    Trans Kans Acad Sci; 1993 Apr; 96(1-2):87-92. PubMed ID: 11537717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Photobioreactors in Regenerative Life Support Systems for Human Space Exploration.
    Fahrion J; Mastroleo F; Dussap CG; Leys N
    Front Microbiol; 2021; 12():699525. PubMed ID: 34276632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Nitrogen Recycling Strategies for Bioregenerative Life Support Systems in Space.
    Verbeelen T; Leys N; Ganigué R; Mastroleo F
    Front Microbiol; 2021; 12():700810. PubMed ID: 34721316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems.
    Kitaya Y; Okayama T; Murakami K; Takeuchi T
    Adv Space Res; 2003; 31(7):1743-9. PubMed ID: 14503512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.
    Richter PR; Liu Y; An Y; Li X; Nasir A; Strauch SM; Becker I; Krüger J; Schuster M; Ntefidou M; Daiker V; Haag FW; Aiach A; Lebert M
    Life Sci Space Res (Amst); 2015 Jan; 4():1-5. PubMed ID: 26177616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.