These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31970147)

  • 21. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries.
    Xu Y; Chu K; Li Z; Xu S; Yao G; Niu P; Zheng F
    Dalton Trans; 2020 Aug; 49(33):11597-11604. PubMed ID: 32776067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast-Charging and High Volumetric Capacity Anode Based on Co
    Kim NY; Lee G; Choi J
    Chemistry; 2018 Dec; 24(71):19045-19052. PubMed ID: 30280430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micrometer-Sized Porous Fe
    Liu D; Xu X; Tan J; Zhu J; Li Q; Luo Y; Wu P; Zhang X; Han C; Mai L
    Small; 2019 Jan; 15(2):e1803572. PubMed ID: 30548088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.
    Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance.
    Zeng L; Huang X; Chen X; Zheng C; Qian Q; Chen Q; Wei M
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):232-9. PubMed ID: 26651359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries.
    Wen T; Wu XL; Zhang S; Wang X; Xu AW
    Chem Asian J; 2015 Mar; 10(3):595-601. PubMed ID: 25663599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.
    Yoo HD; Liang Y; Li Y; Yao Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7001-7. PubMed ID: 25799037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries.
    Hao J; Yang Y; Zhao J; Liu X; Endres F; Chi C; Wang B; Liu X; Li Y
    Nanoscale; 2017 Jun; 9(24):8481-8488. PubMed ID: 28604881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.
    Dörr TS; Fleischmann S; Zeiger M; Grobelsek I; de Oliveira PW; Presser V
    Chemistry; 2018 Apr; 24(24):6358-6363. PubMed ID: 29508934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Easy preparation of nanoporous Ge/Cu
    Hao Q; Liu Q; Zhang Y; Xu C; Hou J
    J Colloid Interface Sci; 2019 Mar; 539():665-671. PubMed ID: 30639984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries.
    Xiao S; Pan D; Wang L; Zhang Z; Lyu Z; Dong W; Chen X; Zhang D; Chen W; Li H
    Nanoscale; 2016 Nov; 8(46):19343-19351. PubMed ID: 27841893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity.
    Zhong J; Wang T; Wang L; Peng L; Fu S; Zhang M; Cao J; Xu X; Liang J; Fei H; Duan X; Lu B; Wang Y; Zhu J; Duan X
    Nanomicro Lett; 2022 Jan; 14(1):50. PubMed ID: 35076763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries.
    Zhao H; Yang Q; Yuca N; Ling M; Higa K; Battaglia VS; Parkinson DY; Srinivasan V; Liu G
    Nano Lett; 2016 Jul; 16(7):4686-90. PubMed ID: 27336856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage.
    Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y
    ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of Cathode Electrodes in Lithium-Ion Battery: Pitfalls and the Befitting Counter Electrode.
    Han M; Duan J; Wang Z; Wu W; Luo W
    Small; 2023 May; 19(19):e2208018. PubMed ID: 36759956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled synthesis of hollow C@TiO
    Pei J; Geng H; Ang EH; Zhang L; Cao X; Zheng J; Gu H
    Nanoscale; 2018 Sep; 10(36):17327-17334. PubMed ID: 30198042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 3D structure C/Si/ZnCo
    Li S; Xiao H; Zhou J; Zhao C; Yuan Y; Xia X; Bao Y; Lourenço M; Homewood K; Gao Y
    Nanoscale; 2022 Nov; 14(44):16560-16571. PubMed ID: 36314646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Nanocrystalline Fe
    Teng X; Qin Y; Wang X; Li H; Shang X; Fan S; Li Q; Xu J; Cao D; Li S
    Nanoscale Res Lett; 2018 Feb; 13(1):60. PubMed ID: 29473118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.