BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31970153)

  • 1. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by
    Oliveira-Filho ER; Silva JGP; de Macedo MA; Taciro MK; Gomez JGC; Silva LF
    Front Bioeng Biotechnol; 2019; 7():416. PubMed ID: 31970153
    [No Abstract]   [Full Text] [Related]  

  • 2. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari.
    Guamán LP; Oliveira-Filho ER; Barba-Ostria C; Gomez JGC; Taciro MK; da Silva LF
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):165-173. PubMed ID: 29349569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures.
    Raposo RS; de Almeida MC; de Oliveira MD; da Fonseca MM; Cesário MT
    N Biotechnol; 2017 Jan; 34():12-22. PubMed ID: 27720861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari.
    Guamán LP; Barba-Ostria C; Zhang F; Oliveira-Filho ER; Gomez JGC; Silva LF
    Microb Cell Fact; 2018 May; 17(1):74. PubMed ID: 29764418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone.
    Cesário MT; Raposo RS; M D de Almeida MC; van Keulen F; Ferreira BS; Telo JP; R da Fonseca MM
    Int J Biol Macromol; 2014 Nov; 71():59-67. PubMed ID: 24811901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate.
    Oliveira-Filho ER; de Macedo MA; Lemos ACC; Adams F; Merkel OM; Taciro MK; Gomez JGC; Silva LF
    Int J Biol Macromol; 2022 Jul; 213():902-914. PubMed ID: 35690163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari.
    Mendonça TT; Tavares RR; Cespedes LG; Sánchez-Rodriguez RJ; Schripsema J; Taciro MK; Gomez JG; Silva LF
    Int J Biol Macromol; 2017 May; 98():654-663. PubMed ID: 28167112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-cell-density poly (3-hydroxybutyrate) production from sucrose using Burkholderia sacchari culture in airlift bioreactor.
    Pradella JG; Taciro MK; Mateus AY
    Bioresour Technol; 2010 Nov; 101(21):8355-60. PubMed ID: 20580221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari.
    Raposo RS; de Almeida MCMD; da Fonseca MMR; Cesário MT
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):825-833. PubMed ID: 28735003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid.
    Ashby RD; Solaiman DKY; Nuñez A; Strahan GD; Johnston DB
    Bioresour Technol; 2018 Apr; 253():333-342. PubMed ID: 29413997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate.
    Silva LF; Taciro MK; Michelin Ramos ME; Carter JM; Pradella JG; Gomez JG
    J Ind Microbiol Biotechnol; 2004 Jul; 31(6):245-54. PubMed ID: 15221664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165.
    Miranda De Sousa Dias M; Koller M; Puppi D; Morelli A; Chiellini F; Braunegg G
    Bioengineering (Basel); 2017 Apr; 4(2):. PubMed ID: 28952515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.
    Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A
    Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates.
    Cesário MT; Raposo RS; de Almeida MC; van Keulen F; Ferreira BS; da Fonseca MM
    N Biotechnol; 2014 Jan; 31(1):104-13. PubMed ID: 24157713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the potential of Burkholderia sacchari to produce polyhydroxyalkanoates.
    Mendonça TT; Gomez JG; Buffoni E; Sánchez Rodriguez RJ; Schripsema J; Lopes MS; Silva LF
    J Appl Microbiol; 2014 Apr; 116(4):815-29. PubMed ID: 24279348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giving credit to residual bioresources: From municipal solid waste hydrolysate and waste plum juice to poly (3-hydroxybutyrate).
    Izaguirre JK; da Fonseca MMR; Castañón S; Villarán MC; Cesário MT
    Waste Manag; 2020 Dec; 118():534-540. PubMed ID: 32980732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts.
    Oliveira-Filho ER; Gomez JGC; Taciro MK; Silva LF
    Bioresour Technol; 2021 Oct; 337():125472. PubMed ID: 34320752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nutrient and oxygen limitation, salinity and type of salt on the accumulation of poly(3-hydroxybutyrate) in Bacillus megaterium uyuni S29 with sucrose as a carbon source.
    Schmid M; Raschbauer M; Song H; Bauer C; Neureiter M
    N Biotechnol; 2021 Mar; 61():137-144. PubMed ID: 33278638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020.
    Norhafini H; Huong KH; Amirul AA
    Int J Biol Macromol; 2019 Mar; 125():1024-1032. PubMed ID: 30557643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.