These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 31970359)
1. High resolution noncontact atomic force microscopy imaging with oxygen-terminated copper tips at 78 K. Yesilpinar D; Schulze Lammers B; Timmer A; Amirjalayer S; Fuchs H; Mönig H Nanoscale; 2020 Feb; 12(5):2961-2965. PubMed ID: 31970359 [TBL] [Abstract][Full Text] [Related]
2. Copper-oxide tip functionalization for submolecular atomic force microscopy. Mönig H Chem Commun (Camb); 2018 Sep; 54(71):9874-9888. PubMed ID: 30124700 [TBL] [Abstract][Full Text] [Related]
3. Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe. Mönig H; Hermoso DR; Díaz Arado O; Todorović M; Timmer A; Schüer S; Langewisch G; Pérez R; Fuchs H ACS Nano; 2016 Jan; 10(1):1201-9. PubMed ID: 26605698 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking atomically defined AFM tips for chemical-selective imaging. Schulze Lammers B; Yesilpinar D; Timmer A; Hu Z; Ji W; Amirjalayer S; Fuchs H; Mönig H Nanoscale; 2021 Aug; 13(32):13617-13623. PubMed ID: 34477636 [TBL] [Abstract][Full Text] [Related]
5. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Mönig H; Amirjalayer S; Timmer A; Hu Z; Liu L; Díaz Arado O; Cnudde M; Strassert CA; Ji W; Rohlfing M; Fuchs H Nat Nanotechnol; 2018 May; 13(5):371-375. PubMed ID: 29632397 [TBL] [Abstract][Full Text] [Related]
6. Mechanical and Chemical Interactions in Atomically Defined Contacts. Yesilpinar D; Schulze Lammers B; Timmer A; Hu Z; Ji W; Amirjalayer S; Fuchs H; Mönig H Small; 2021 Sep; 17(35):e2101637. PubMed ID: 34288402 [TBL] [Abstract][Full Text] [Related]
7. Standardization of Chemically Selective Atomic Force Microscopy for Metal Oxide Surfaces. Wiesener P; Förster S; Merkel M; Schulze Lammers B; Fuchs H; Amirjalayer S; Mönig H ACS Nano; 2024 Aug; 18(33):21948-21956. PubMed ID: 39103158 [TBL] [Abstract][Full Text] [Related]
8. Quantitative atomic force microscopy with carbon monoxide terminated tips. Sun Z; Boneschanscher MP; Swart I; Vanmaekelbergh D; Liljeroth P Phys Rev Lett; 2011 Jan; 106(4):046104. PubMed ID: 21405341 [TBL] [Abstract][Full Text] [Related]
9. Nitrous oxide as an effective AFM tip functionalization: a comparative study. Chutora T; de la Torre B; Mutombo P; Hellerstedt J; Kopeček J; Jelínek P; Švec M Beilstein J Nanotechnol; 2019; 10():315-321. PubMed ID: 30800570 [TBL] [Abstract][Full Text] [Related]
10. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related]
11. Role of tip apices in scanning force spectroscopy on alkali halides at room temperature-chemical nature of the tip apex and atomic-scale deformations. Wagner P; Foster A; Yi I; Abe M; Sugimoto Y; Hoffmann-Vogel R Nanotechnology; 2021 Jan; 32(3):035706. PubMed ID: 33052141 [TBL] [Abstract][Full Text] [Related]
12. Structure and stability of semiconductor tip apexes for atomic force microscopy. Pou P; Ghasemi SA; Jelinek P; Lenosky T; Goedecker S; Perez R Nanotechnology; 2009 Jul; 20(26):264015. PubMed ID: 19509446 [TBL] [Abstract][Full Text] [Related]
13. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research. Altman EI; Baykara MZ; Schwarz UD Acc Chem Res; 2015 Sep; 48(9):2640-8. PubMed ID: 26301490 [TBL] [Abstract][Full Text] [Related]
14. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Peng J; Guo J; Hapala P; Cao D; Ma R; Cheng B; Xu L; Ondráček M; Jelínek P; Wang E; Jiang Y Nat Commun; 2018 Jan; 9(1):122. PubMed ID: 29317638 [TBL] [Abstract][Full Text] [Related]
15. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy. Jarvis SP Int J Mol Sci; 2015 Aug; 16(8):19936-59. PubMed ID: 26307976 [TBL] [Abstract][Full Text] [Related]
16. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe. Sweetman A; Jarvis S; Danza R; Moriarty P Beilstein J Nanotechnol; 2012; 3():25-32. PubMed ID: 22428093 [TBL] [Abstract][Full Text] [Related]
17. Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. Gao DZ; Grenz J; Watkins MB; Federici Canova F; Schwarz A; Wiesendanger R; Shluger AL ACS Nano; 2014 May; 8(5):5339-51. PubMed ID: 24787716 [TBL] [Abstract][Full Text] [Related]
18. Prospects for resolving chemical structure by atomic force microscopy: a first-principles study. Guo CS; Van Hove MA; Zhang RQ; Minot C Langmuir; 2010 Nov; 26(21):16271-7. PubMed ID: 20973578 [TBL] [Abstract][Full Text] [Related]
19. Sample corrugation affects the apparent bond lengths in atomic force microscopy. Boneschanscher MP; Hämäläinen SK; Liljeroth P; Swart I ACS Nano; 2014 Mar; 8(3):3006-14. PubMed ID: 24559211 [TBL] [Abstract][Full Text] [Related]
20. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips. Wastl DS; Judmann M; Weymouth AJ; Giessibl FJ ACS Nano; 2015; 9(4):3858-65. PubMed ID: 25816927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]