These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 31970612)
1. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean. Yang X; Yang J; Li H; Niu L; Xing G; Zhang Y; Xu W; Zhao Q; Li Q; Dong Y Transgenic Res; 2020 Apr; 29(2):187-198. PubMed ID: 31970612 [TBL] [Abstract][Full Text] [Related]
2. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean. Zhang F; Ruan X; Wang X; Liu Z; Hu L; Li C Appl Biochem Biotechnol; 2016 Dec; 180(8):1542-1558. PubMed ID: 27544774 [TBL] [Abstract][Full Text] [Related]
4. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes. Zarinpanjeh N; Motallebi M; Zamani MR; Ziaei M J Appl Genet; 2016 Nov; 57(4):417-425. PubMed ID: 26862081 [TBL] [Abstract][Full Text] [Related]
5. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis. Ranjan A; Westrick NM; Jain S; Piotrowski JS; Ranjan M; Kessens R; Stiegman L; Grau CR; Conley SP; Smith DL; Kabbage M Plant Biotechnol J; 2019 Aug; 17(8):1567-1581. PubMed ID: 30672092 [TBL] [Abstract][Full Text] [Related]
6. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum. Aghazadeh R; Zamani M; Motallebi M; Moradyar M; Moghadassi Jahromi Z World J Microbiol Biotechnol; 2016 Sep; 32(9):144. PubMed ID: 27430511 [TBL] [Abstract][Full Text] [Related]
7. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Zhang F; Ge H; Zhang F; Guo N; Wang Y; Chen L; Ji X; Li C Plant Physiol Biochem; 2016 Mar; 100():64-74. PubMed ID: 26774866 [TBL] [Abstract][Full Text] [Related]
8. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Ziaei M; Motallebi M; Zamani MR; Panjeh NZ Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090 [TBL] [Abstract][Full Text] [Related]
9. Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping. Jianan Z; Li W; Zhang Y; Song W; Jiang H; Zhao J; Zhan Y; Teng W; Qiu L; Zhao X; Han Y Theor Appl Genet; 2021 Aug; 134(8):2699-2709. PubMed ID: 34057551 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic Analysis Reveals Candidate Genes Responsive to Jiang H; Jin X; Shi X; Xue Y; Jiang J; Yuan C; Du Y; Liu X; Xie R; Liu X; Li L; Wei L; Zhang C; Tong L; Chai Y Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171780 [No Abstract] [Full Text] [Related]
11. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878 [TBL] [Abstract][Full Text] [Related]
12. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean. Du Q; Yang X; Zhang J; Zhong X; Kim KS; Yang J; Xing G; Li X; Jiang Z; Li Q; Dong Y; Pan H Transgenic Res; 2018 Jun; 27(3):277-288. PubMed ID: 29728957 [TBL] [Abstract][Full Text] [Related]
13. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus. Joshi RK; Megha S; Basu U; Rahman MH; Kav NN PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760 [TBL] [Abstract][Full Text] [Related]
15. Induced Defense Response in Soybean to Yang M; Zhang W; Lv Z; Shi L; Zhang K; Ge B Plant Dis; 2023 Jan; 107(1):107-115. PubMed ID: 35771107 [No Abstract] [Full Text] [Related]
16. Ascospore Inoculum Density and Characterization of Components of Partial Resistance to Sclerotinia sclerotiorum in Soybean. Huzar-Novakowiski J; Dorrance AE Plant Dis; 2018 Jul; 102(7):1326-1333. PubMed ID: 30673564 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of a new soybean promoter induced by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Cabre L; Peyrard S; Sirven C; Gilles L; Pelissier B; Ducerf S; Poussereau N BMC Biotechnol; 2021 Mar; 21(1):27. PubMed ID: 33765998 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms. Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614 [TBL] [Abstract][Full Text] [Related]
19. Metabolic response of soybean plants to Sclerotinia sclerotiorum infection. de Oliveira CS; LiĆ£o LM; Alcantara GB Phytochemistry; 2019 Nov; 167():112099. PubMed ID: 31476575 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]