These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31970880)

  • 21. Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting phosphorus fluxes.
    Steenbergh AK; Bodelier PL; Slomp CP; Laanbroek HJ
    PLoS One; 2014; 9(3):e92401. PubMed ID: 24667801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression in the deep biosphere.
    Orsi WD; Edgcomb VP; Christman GD; Biddle JF
    Nature; 2013 Jul; 499(7457):205-8. PubMed ID: 23760485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments.
    Tully BJ; Heidelberg JF
    Appl Environ Microbiol; 2016 Jul; 82(14):4232-43. PubMed ID: 27208118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment.
    Wurzbacher C; Fuchs A; Attermeyer K; Frindte K; Grossart HP; Hupfer M; Casper P; Monaghan MT
    Microbiome; 2017 Apr; 5(1):41. PubMed ID: 28388930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep biosphere-related bacteria within the subsurface of tidal flat sediments.
    Wilms R; Köpke B; Sass H; Chang TS; Cypionka H; Engelen B
    Environ Microbiol; 2006 Apr; 8(4):709-19. PubMed ID: 16584482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments.
    Steenbergh AK; Bodelier PL; Hoogveld HL; Slomp CP; Laanbroek HJ
    Microbes Environ; 2015; 30(2):192-5. PubMed ID: 25817584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea.
    Zhang J; Chen M; Huang J; Guo X; Zhang Y; Liu D; Wu R; He H; Wang J
    PLoS One; 2019; 14(4):e0215328. PubMed ID: 30973915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area.
    Miettinen H; Bomberg M; Nyyssönen M; Reunamo A; Jørgensen KS; Vikman M
    PLoS One; 2019; 14(7):e0218834. PubMed ID: 31265451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria.
    Shao S; Luan X; Dang H; Zhou H; Zhao Y; Liu H; Zhang Y; Dai L; Ye Y; Klotz MG
    FEMS Microbiol Ecol; 2014 Feb; 87(2):503-16. PubMed ID: 24164560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin.
    Webster G; Parkes RJ; Cragg BA; Newberry CJ; Weightman AJ; Fry JC
    FEMS Microbiol Ecol; 2006 Oct; 58(1):65-85. PubMed ID: 16958909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait).
    Cathalot C; Rabouille C; Sauter E; Schewe I; Soltwedel T
    PLoS One; 2015; 10(10):e0138339. PubMed ID: 26465885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial community composition along a 50 000-year lacustrine sediment sequence.
    Vuillemin A; Ariztegui D; Horn F; Kallmeyer J; Orsi WD;
    FEMS Microbiol Ecol; 2018 Apr; 94(4):. PubMed ID: 29471361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial Residents of the Atlantis Massif's Shallow Serpentinite Subsurface.
    Motamedi S; Orcutt BN; Früh-Green GL; Twing KI; Pendleton HL; Brazelton WJ
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial dominance in subseafloor sediments characterized by methane hydrates.
    Briggs BR; Inagaki F; Morono Y; Futagami T; Huguet C; Rosell-Mele A; Lorenson TD; Colwell FS
    FEMS Microbiol Ecol; 2012 Jul; 81(1):88-98. PubMed ID: 22273405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life in the Anoxic Sub-Seafloor Environment: Linking Microbial Metabolism and Mega Reserves of Methane Hydrate.
    Honkalas V; Dabir A; Dhakephalkar PK
    Adv Biochem Eng Biotechnol; 2016; 156():235-262. PubMed ID: 26907550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin.
    Forschner SR; Sheffer R; Rowley DC; Smith DC
    Environ Microbiol; 2009 Mar; 11(3):630-9. PubMed ID: 19278449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay.
    Petro C; Zäncker B; Starnawski P; Jochum LM; Ferdelman TG; Jørgensen BB; Røy H; Kjeldsen KU; Schramm A
    Front Microbiol; 2019; 10():758. PubMed ID: 31031732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogeochemical control of the coupled CO2-O 2 system of the Baltic Sea: a review of the results of Baltic-C.
    Omstedt A; Humborg C; Pempkowiak J; Perttilä M; Rutgersson A; Schneider B; Smith B
    Ambio; 2014 Feb; 43(1):49-59. PubMed ID: 24414804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea.
    Musat N; Werner U; Knittel K; Kolb S; Dodenhof T; van Beusekom JE; de Beer D; Dubilier N; Amann R
    Syst Appl Microbiol; 2006 Jun; 29(4):333-48. PubMed ID: 16431068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.