These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31970880)

  • 41. Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial.
    Wörmer L; Hoshino T; Bowles MW; Viehweger B; Adhikari RR; Xiao N; Uramoto GI; Könneke M; Lazar CS; Morono Y; Inagaki F; Hinrichs KU
    Sci Adv; 2019 Feb; 5(2):eaav1024. PubMed ID: 30801015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
    Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R
    Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments.
    Edlund A; Jansson JK
    Appl Environ Microbiol; 2006 Oct; 72(10):6800-7. PubMed ID: 16950911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria.
    Bienhold C; Zinger L; Boetius A; Ramette A
    PLoS One; 2016; 11(1):e0148016. PubMed ID: 26814838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor.
    Fang J; Kato C; Runko GM; Nogi Y; Hori T; Li J; Morono Y; Inagaki F
    Front Microbiol; 2017; 8():137. PubMed ID: 28220112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters.
    Lopez-Fernandez M; Broman E; Simone D; Bertilsson S; Dopson M
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial turnover times in the deep seabed studied by amino acid racemization modelling.
    Braun S; Mhatre SS; Jaussi M; Røy H; Kjeldsen KU; Pearce C; Seidenkrantz MS; Jørgensen BB; Lomstein BA
    Sci Rep; 2017 Jul; 7(1):5680. PubMed ID: 28720809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial and archaeal communities in sediments of the north Chinese marginal seas.
    Liu J; Liu X; Wang M; Qiao Y; Zheng Y; Zhang XH
    Microb Ecol; 2015 Jul; 70(1):105-17. PubMed ID: 25501892
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Endospores associated with deep seabed geofluid features in the eastern Gulf of Mexico.
    Rattray JE; Chakraborty A; Elizondo G; Ellefson E; Bernard B; Brooks J; Hubert CRJ
    Geobiology; 2022 Nov; 20(6):823-836. PubMed ID: 35993193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt.
    Jungbluth SP; Bowers RM; Lin HT; Cowen JP; Rappé MS
    ISME J; 2016 Aug; 10(8):2033-47. PubMed ID: 26872042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential impact of global climate change on benthic deep-sea microbes.
    Danovaro R; Corinaldesi C; Dell'Anno A; Rastelli E
    FEMS Microbiol Lett; 2017 Dec; 364(23):. PubMed ID: 29045616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dominance of Wolbachia sp. in the deep-sea sediment bacterial metataxonomic sequencing analysis in the Bay of Bengal, Indian Ocean.
    Parvathi A; Jasna V; Aswathy VK; Aparna S; Nathan VK; Jyothibabu R
    Genomics; 2020 Jan; 112(1):1030-1041. PubMed ID: 31229556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.
    Li T; Wang P
    J Microbiol Biotechnol; 2013 May; 23(5):602-13. PubMed ID: 23648848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin.
    Langenheder S; Comte J; Zha Y; Samad MS; Sinclair L; Eiler A; Lindström ES
    Environ Microbiol Rep; 2016 Aug; 8(4):479-85. PubMed ID: 26929161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of a rapid direct viable count method to deep-sea sediment bacteria.
    Quéric NV; Soltwedel T; Arntz WE
    J Microbiol Methods; 2004 Jun; 57(3):351-67. PubMed ID: 15134883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3years of studies.
    Siedlewicz G; Białk-Bielińska A; Borecka M; Winogradow A; Stepnowski P; Pazdro K
    Mar Pollut Bull; 2018 Apr; 129(2):787-801. PubMed ID: 29100638
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Vandieken V; Marshall IPG; Niemann H; Engelen B; Cypionka H
    Front Microbiol; 2017; 8():2614. PubMed ID: 29354105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea.
    Goffredi SK; Orphan VJ
    Environ Microbiol; 2010 Feb; 12(2):344-63. PubMed ID: 19799620
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments.
    Luna GM; Corinaldesi C; Rastelli E; Danovaro R
    Environ Microbiol Rep; 2013 Oct; 5(5):731-9. PubMed ID: 24115624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections.
    Tamelander T; Spilling K; Winder M
    Ambio; 2017 Dec; 46(8):842-851. PubMed ID: 28647909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.