These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 31971269)

  • 1. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump.
    Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA
    Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration's benchmark nozzle model.
    Good BC
    Biorheology; 2023; 59(1-2):1-18. PubMed ID: 34924367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Asztalos B; Masuzawa T; Tsukiya T; Endo S; Taenaka Y
    Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDA Benchmark Medical Device Flow Models for CFD Validation.
    Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA
    ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic simulation of the FDA centrifugal blood pump benchmark.
    Karimi MS; Razzaghi P; Raisee M; Hendrick P; Nourbakhsh A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1871-1887. PubMed ID: 34191187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.
    Su B; Chua LP; Wang X
    Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
    Taskin ME; Fraser KH; Zhang T; Gellman B; Fleischli A; Dasse KA; Griffith BP; Wu ZJ
    Artif Organs; 2010 Dec; 34(12):1099-113. PubMed ID: 20626739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Masuzawa T; Takiura K; Taenaka Y
    Artif Organs; 1998 May; 22(5):381-5. PubMed ID: 9609345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
    Mantegazza A; Tobin N; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.