These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31971376)
1. Fluorescence Signal Amplification by Using β-Galactosidase for Flow Cytometry; Advantages of an Endogenous Activity-Free Enzyme. Nobori T; Kawamura M; Yoshida R; Joichi T; Kamino K; Kishimura A; Baba E; Mori T; Katayama Y Anal Chem; 2020 Feb; 92(4):3069-3076. PubMed ID: 31971376 [TBL] [Abstract][Full Text] [Related]
2. Alkaline Phosphatase-Catalyzed Amplification of a Fluorescence Signal for Flow Cytometry. Nobori T; Tosaka K; Kawamura A; Joichi T; Kamino K; Kishimura A; Baba E; Mori T; Katayama Y Anal Chem; 2018 Jan; 90(2):1059-1062. PubMed ID: 29260552 [TBL] [Abstract][Full Text] [Related]
3. Detection of endogenous and antibody-conjugated alkaline phosphatase with ELF-97 phosphate in multicolor flow cytometry applications. Telford W; Cox W; Singer V Cytometry; 2001 Feb; 43(2):117-25. PubMed ID: 11169576 [TBL] [Abstract][Full Text] [Related]
4. β-Galactosidase-Catalyzed Fluorescent Reporter Labeling of Living Cells for Sensitive Detection of Cell Surface Antigens. Noguchi K; Shimomura T; Ohuchi Y; Ishiyama M; Shiga M; Mori T; Katayama Y; Ueno Y Bioconjug Chem; 2020 Jul; 31(7):1740-1744. PubMed ID: 32538077 [TBL] [Abstract][Full Text] [Related]
5. Signal amplification in flow cytometry for cell surface antigen analysis. Mori T; Katayama Y J Biochem; 2019 Sep; 166(3):205-212. PubMed ID: 31251348 [TBL] [Abstract][Full Text] [Related]
6. Activatable Formation of Emissive Excimers for Highly Selective Detection of β-Galactosidase. Li Y; Ning L; Yuan F; Zhang T; Zhang J; Xu Z; Yang XF Anal Chem; 2020 Apr; 92(8):5733-5740. PubMed ID: 32193934 [TBL] [Abstract][Full Text] [Related]
7. Ratiometric fluorescent probes with a self-immolative spacer for real-time detection of β-galactosidase and imaging in living cells. Chen X; Ma X; Zhang Y; Gao G; Liu J; Zhang X; Wang M; Hou S Anal Chim Acta; 2018 Nov; 1033():193-198. PubMed ID: 30172326 [TBL] [Abstract][Full Text] [Related]
8. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate. Telford WG; Cox WG; Stiner D; Singer VL; Doty SB Cytometry; 1999 Dec; 37(4):314-9. PubMed ID: 10547617 [TBL] [Abstract][Full Text] [Related]
9. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786 [TBL] [Abstract][Full Text] [Related]
10. Galactosidase-catalyzed fluorescence amplification method (GAFAM): sensitive fluorescent immunohistochemistry using novel fluorogenic β-galactosidase substrates and its application in multiplex immunostaining. Hirata M; Kogame T; Adachi S; Haga H Histochem Cell Biol; 2023 Mar; 159(3):233-246. PubMed ID: 36374321 [TBL] [Abstract][Full Text] [Related]
11. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging. Chen X; Zhang X; Ma X; Zhang Y; Gao G; Liu J; Hou S Talanta; 2019 Jan; 192():308-313. PubMed ID: 30348394 [TBL] [Abstract][Full Text] [Related]
13. An enzymatically activated fluorescence probe for targeted tumor imaging. Kamiya M; Kobayashi H; Hama Y; Koyama Y; Bernardo M; Nagano T; Choyke PL; Urano Y J Am Chem Soc; 2007 Apr; 129(13):3918-29. PubMed ID: 17352471 [TBL] [Abstract][Full Text] [Related]
14. Measuring β-Galactosidase Activity in Gram-Positive Bacteria Using a Whole-Cell Assay with MUG as a Fluorescent Reporter. Chiu NHL; Watson AL Curr Protoc Toxicol; 2017 Nov; 74():4.44.1-4.44.8. PubMed ID: 29117437 [TBL] [Abstract][Full Text] [Related]
15. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe. Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782 [TBL] [Abstract][Full Text] [Related]
16. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Jiang G; Zeng G; Zhu W; Li Y; Dong X; Zhang G; Fan X; Wang J; Wu Y; Tang BZ Chem Commun (Camb); 2017 Apr; 53(32):4505-4508. PubMed ID: 28383580 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry. Karkmann U; Radbruch A; Hölzel V; Scheffold A J Immunol Methods; 1999 Nov; 230(1-2):113-20. PubMed ID: 10594358 [TBL] [Abstract][Full Text] [Related]
18. Detection of beta-lactamase reporter gene expression by flow cytometry. Knapp T; Hare E; Feng L; Zlokarnik G; Negulescu P Cytometry A; 2003 Feb; 51(2):68-78. PubMed ID: 12541281 [TBL] [Abstract][Full Text] [Related]
19. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426 [TBL] [Abstract][Full Text] [Related]
20. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. Komatsu T; Kikuchi K; Takakusa H; Hanaoka K; Ueno T; Kamiya M; Urano Y; Nagano T J Am Chem Soc; 2006 Dec; 128(50):15946-7. PubMed ID: 17165702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]