These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31971378)

  • 1. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals.
    Liu J; Zhang J
    Chem Rev; 2020 Feb; 120(4):2123-2170. PubMed ID: 31971378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rh@Au Core-Shell Nanocrystals with the Core in Tensile Strain and the Shell in Compressive Strain.
    Pawlik VD; Janssen A; Ding Y; Xia Y
    J Phys Chem C Nanomater Interfaces; 2024 Jan; 128(3):1377-1385. PubMed ID: 38293691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Au
    Hou T; Li X; Zhang X; Cai R; Wang YC; Chen A; Gu H; Su M; Li S; Li Q; Zhang L; Haigh SJ; Zhang J
    Nano Lett; 2024 Mar; 24(9):2719-2726. PubMed ID: 38377427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals.
    Gamler JTL; Leonardi A; Sang X; Koczkur KM; Unocic RR; Engel M; Skrabalak SE
    Nanoscale Adv; 2020 Mar; 2(3):1105-1114. PubMed ID: 36133036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches.
    Zhang J; Tang Y; Lee K; Ouyang M
    Science; 2010 Mar; 327(5973):1634-8. PubMed ID: 20339071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology.
    Sang W; Zheng T; Wang Y; Li X; Zhao X; Zeng J; Hou JG
    Nano Lett; 2014 Nov; 14(11):6666-71. PubMed ID: 25310606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.
    Fang B; Kim JH; Kim MS; Yu JS
    Acc Chem Res; 2013 Jul; 46(7):1397-406. PubMed ID: 23270494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation exchange mediated synthesis of bright Au@ZnTe core-shell nanocrystals.
    Sadeghi S; Melikov R; Sahin M; Nizamoglu S
    Nanotechnology; 2021 Jan; 32(2):025603. PubMed ID: 33063692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics.
    Zhu L; Liu L; Varlas S; Wang RY; O'Reilly RK; Tong Z
    ACS Nano; 2023 Dec; 17(23):24141-24153. PubMed ID: 37979190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework.
    Pambudi FI; Anderson MW; Attfield MP
    Chem Sci; 2019 Nov; 10(41):9571-9575. PubMed ID: 32055330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry.
    Johnson NJ; van Veggel FC
    ACS Nano; 2014 Oct; 8(10):10517-27. PubMed ID: 25289882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.
    Dai R; Zhang A; Pan Z; Al-Enizi AM; Elzatahry AA; Hu L; Zheng G
    Small; 2016 May; 12(20):2792-9. PubMed ID: 27062267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding of Lanthanide-Doped Core-Shell Structure at the Nanoscale Level.
    Zhao Q; Tian X; Ren L; Su Y; Su Q
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphine ligand-mediated kinetics manipulation of aqueous cation exchange: a case study on the synthesis of Au@SnS
    Cheng X; Liu J; Wan X; Wang H; Li Y; Liu J; Rong H; Xu M; Chen W; Zhang J
    Chem Commun (Camb); 2018 Sep; 54(71):9993-9996. PubMed ID: 30123910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Mismatch-Induced Formation of Copper Nanoplates with Embedded Ultrasmall Platinum or Palladium Cores for Tunable Optical Properties.
    Qiao Z; Yang H; Fan Q; Liu Z; Liu K; Wen Z; Wang Z; Cheng T; Gao C
    Small; 2023 Apr; 19(15):e2206838. PubMed ID: 36599628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between Chemical Transformations and Atomic Structure in Nanocrystals and Nanoclusters.
    Han H; Yao Y; Robinson RD
    Acc Chem Res; 2021 Feb; 54(3):509-519. PubMed ID: 33434011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Emitting CuInSe₂/CuInS₂ Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange.
    van der Stam W; Bladt E; Rabouw FT; Bals S; Donega Cde M
    ACS Nano; 2015 Nov; 9(11):11430-8. PubMed ID: 26449673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding Light on the Role of Misfit Strain in Controlling Core-Shell Nanocrystals.
    Zhao J; Chen B; Wang F
    Adv Mater; 2020 Nov; 32(46):e2004142. PubMed ID: 33051904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and properties of colloidal heteronanocrystals.
    de Mello Donegá C
    Chem Soc Rev; 2011 Mar; 40(3):1512-46. PubMed ID: 20972490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.