These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 31971529)
1. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine. Tang Y; Yao Y; Wei G Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529 [TBL] [Abstract][Full Text] [Related]
2. Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms. Guo C; Arnon ZA; Qi R; Zhang Q; Adler-Abramovich L; Gazit E; Wei G ACS Nano; 2016 Sep; 10(9):8316-24. PubMed ID: 27548765 [TBL] [Abstract][Full Text] [Related]
3. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. Guo C; Luo Y; Zhou R; Wei G ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743 [TBL] [Abstract][Full Text] [Related]
4. Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. Ji W; Tang Y; Makam P; Yao Y; Jiao R; Cai K; Wei G; Gazit E J Am Chem Soc; 2021 Oct; 143(42):17633-17645. PubMed ID: 34647727 [TBL] [Abstract][Full Text] [Related]
5. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations. Wang Y; Wang K; Zhao X; Xu X; Sun T Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931 [TBL] [Abstract][Full Text] [Related]
6. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Guo C; Luo Y; Zhou R; Wei G Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750 [TBL] [Abstract][Full Text] [Related]
7. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of diphenylalanine peptides on graphene Rissanou AN; Keliri A; Arnittali M; Harmandaris V Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818 [TBL] [Abstract][Full Text] [Related]
9. Self-assembly of cyclo-diphenylalanine peptides in vacuum. Jeon J; Shell MS J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752 [TBL] [Abstract][Full Text] [Related]
10. Initial Aggregation and Ordering Mechanism of Diphenylalanine from Microsecond All-Atom Molecular Dynamics Simulations. Anderson J; Lake PT; McCullagh M J Phys Chem B; 2018 Dec; 122(51):12331-12341. PubMed ID: 30511861 [TBL] [Abstract][Full Text] [Related]
11. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations. Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864 [TBL] [Abstract][Full Text] [Related]
12. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation. Handelman A; Natan A; Rosenman G J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of two-dimensional (2D) ordered microsphere aligned by supramolecular self-assembly of Formyl-azobenzene and dipeptide. Ma H; Li S; Wei Y; Jiang L; Li J J Colloid Interface Sci; 2018 Mar; 514():491-495. PubMed ID: 29289731 [TBL] [Abstract][Full Text] [Related]
15. Effective Synergistic Effect of Dipeptide-Polyoxometalate-Graphene Oxide Ternary Hybrid Materials on Peroxidase-like Mimics with Enhanced Performance. Ma Z; Qiu Y; Yang H; Huang Y; Liu J; Lu Y; Zhang C; Hu P ACS Appl Mater Interfaces; 2015 Oct; 7(39):22036-45. PubMed ID: 26388072 [TBL] [Abstract][Full Text] [Related]
16. Cation-based approach to morphological diversity of diphenylalanine dipeptide structures. Erdoğan H Soft Matter; 2021 May; 17(20):5221-5230. PubMed ID: 33949599 [TBL] [Abstract][Full Text] [Related]
17. Identification of heterochirality-mediated stereochemical interactions in peptide architectures. Zheng Y; Mao K; Chen S; Zhu X; Jiang M; Wu CJ; Zhu H Colloids Surf B Biointerfaces; 2023 Apr; 224():113200. PubMed ID: 36774824 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial and Antibiofilm Properties of Self-Assembled Dipeptide Nanotubes. Soares I; Rodrigues I; da Costa PM; Gales L Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613773 [TBL] [Abstract][Full Text] [Related]
19. Stimuli-Responsive Dipeptide-Protein Hydrogels through Schiff Base Coassembly. Yuan T; Fei J; Xu Y; Yang X; Li J Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28841256 [TBL] [Abstract][Full Text] [Related]
20. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures. Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]