These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31971579)

  • 1. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest.
    Zeng X; Zhu S; Hou Y; Zhang P; Li L; Li J; Huang LF; Lewis SJ; Nussinov R; Cheng F
    Bioinformatics; 2020 May; 36(9):2805-2812. PubMed ID: 31971579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. deepDR: a network-based deep learning approach to in silico drug repositioning.
    Zeng X; Zhu S; Liu X; Zhou Y; Nussinov R; Cheng F
    Bioinformatics; 2019 Dec; 35(24):5191-5198. PubMed ID: 31116390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiview network embedding for drug-target Interactions prediction by consistent and complementary information preserving.
    Shang Y; Ye X; Futamura Y; Yu L; Sakurai T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35262678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data.
    Zhang Y; Wu M; Wang S; Chen W
    Front Pharmacol; 2022; 13():1009996. PubMed ID: 36210804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions.
    Wan F; Hong L; Xiao A; Jiang T; Zeng J
    Bioinformatics; 2019 Jan; 35(1):104-111. PubMed ID: 30561548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel drug-target interactions via link prediction and network embedding.
    Amiri Souri E; Laddach R; Karagiannis SN; Papageorgiou LG; Tsoka S
    BMC Bioinformatics; 2022 Apr; 23(1):121. PubMed ID: 35379165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder.
    Zhang Y; Feng Y; Wu M; Deng Z; Wang S
    BMC Bioinformatics; 2023 Jul; 24(1):278. PubMed ID: 37415176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.