These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31971583)

  • 1. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells.
    Stassen SV; Siu DMD; Lee KCM; Ho JWK; So HKH; Tsia KK
    Bioinformatics; 2020 May; 36(9):2778-2786. PubMed ID: 31971583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCHNEL: scalable clustering of high dimensional single-cell data.
    Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis.
    Li Y; Nguyen J; Anastasiu DC; Arriaga EA
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37150778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data.
    Yang Y; Huh R; Culpepper HW; Lin Y; Love MI; Li Y
    Bioinformatics; 2019 Apr; 35(8):1269-1277. PubMed ID: 30202935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data.
    Dhapola P; Rodhe J; Olofzon R; Bonald T; Erlandsson E; Soneji S; Karlsson G
    Nat Commun; 2022 Aug; 13(1):4616. PubMed ID: 35941103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection.
    Wan S; Kim J; Won KJ
    Genome Res; 2020 Feb; 30(2):205-213. PubMed ID: 31992615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BnpC: Bayesian non-parametric clustering of single-cell mutation profiles.
    Borgsmüller N; Bonet J; Marass F; Gonzalez-Perez A; Lopez-Bigas N; Beerenwinkel N
    Bioinformatics; 2020 Dec; 36(19):4854-4859. PubMed ID: 32592465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.
    Ren X; Zheng L; Zhang Z
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):201-210. PubMed ID: 31202000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ILoReg: a tool for high-resolution cell population identification from single-cell RNA-seq data.
    Smolander J; Junttila S; Venäläinen MS; Elo LL
    Bioinformatics; 2021 May; 37(8):1107-1114. PubMed ID: 33151294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.