These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 31972395)

  • 1. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Abassi MS; Fuchs T; Rosenberger A; Haenssle HA
    Eur J Cancer; 2020 Mar; 127():21-29. PubMed ID: 31972395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA
    Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Rosenberger A; Haenssle HA
    Eur J Cancer; 2020 Aug; 135():39-46. PubMed ID: 32534243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas.
    Fink C; Blum A; Buhl T; Mitteldorf C; Hofmann-Wellenhof R; Deinlein T; Stolz W; Trennheuser L; Cussigh C; Deltgen D; Winkler JK; Toberer F; Enk A; Rosenberger A; Haenssle HA
    J Eur Acad Dermatol Venereol; 2020 Jun; 34(6):1355-1361. PubMed ID: 31856342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
    Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A;
    Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition.
    Winkler JK; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Haenssle HA
    JAMA Dermatol; 2019 Oct; 155(10):1135-1141. PubMed ID: 31411641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists.
    Haenssle HA; Winkler JK; Fink C; Toberer F; Enk A; Stolz W; Deinlein T; Hofmann-Wellenhof R; Kittler H; Tschandl P; Rosendahl C; Lallas A; Blum A; Abassi MS; Thomas L; Tromme I; Rosenberger A;
    Eur J Cancer; 2021 Feb; 144():192-199. PubMed ID: 33370644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine.
    Winkler JK; Blum A; Kommoss K; Enk A; Toberer F; Rosenberger A; Haenssle HA
    JAMA Dermatol; 2023 Jun; 159(6):621-627. PubMed ID: 37133847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does sex matter? Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Stolz W; Rosenberger A; Haenssle HA
    Eur J Cancer; 2022 Mar; 164():88-94. PubMed ID: 35182926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark corner artefact and diagnostic performance of a market-approved neural network for skin cancer classification.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Kommoss FKF; Buhl T; Enk A; Rosenberger A; Haenssle HA
    J Dtsch Dermatol Ges; 2021 Jun; 19(6):842-850. PubMed ID: 33973372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep neural networks are superior to dermatologists in melanoma image classification.
    Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS
    Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistency of convolutional neural networks in dermoscopic melanoma recognition: A prospective real-world study about the pitfalls of augmented intelligence.
    Goessinger EV; Cerminara SE; Mueller AM; Gottfrois P; Huber S; Amaral M; Wenz F; Kostner L; Weiss L; Kunz M; Maul JT; Wespi S; Broman E; Kaufmann S; Patpanathapillai V; Treyer I; Navarini AA; Maul LV
    J Eur Acad Dermatol Venereol; 2024 May; 38(5):945-953. PubMed ID: 38158385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathologist-level classification of histopathological melanoma images with deep neural networks.
    Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ
    Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening?
    Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV
    Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observational study investigating the level of support from a convolutional neural network in face and scalp lesions deemed diagnostically 'unclear' by dermatologists.
    Kommoss KS; Winkler JK; Mueller-Christmann C; Bardehle F; Toberer F; Stolz W; Kraenke T; Hofmann-Wellenhof R; Blum A; Enk A; Rosenberger A; Haenssle HA
    Eur J Cancer; 2023 May; 185():53-60. PubMed ID: 36963352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi.
    Tognetti L; Bonechi S; Andreini P; Bianchini M; Scarselli F; Cevenini G; Moscarella E; Farnetani F; Longo C; Lallas A; Carrera C; Puig S; Tiodorovic D; Perrot JL; Pellacani G; Argenziano G; Cinotti E; Cataldo G; Balistreri A; Mecocci A; Gori M; Rubegni P; Cartocci A
    J Dermatol Sci; 2021 Feb; 101(2):115-122. PubMed ID: 33358096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of melanoma histotypes and associated patient related factors: basis for a predictive statistical model.
    Haenssle HA; Hoffmann S; Buhl T; Emmert S; Schön MP; Bertsch HP; Rosenberger A
    J Dtsch Dermatol Ges; 2015 Jan; 13(1):37-45. PubMed ID: 25640492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network.
    Gillstedt M; Mannius L; Paoli J; Dahlén Gyllencreutz J; Fougelberg J; Johansson Backman E; Pakka J; Zaar O; Polesie S
    Acta Derm Venereol; 2022 Oct; 102():adv00790. PubMed ID: 36172695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.