These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 31972403)
21. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related]
22. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization. Lee J; Park KY Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266 [TBL] [Abstract][Full Text] [Related]
23. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Minaret J; Dutta A Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229 [TBL] [Abstract][Full Text] [Related]
24. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization. Ul Saqib N; Sarmah AK; Baroutian S Waste Manag; 2019 Apr; 89():236-246. PubMed ID: 31079736 [TBL] [Abstract][Full Text] [Related]
25. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Wang Q; Wu S; Cui D; Zhou H; Wu D; Pan S; Xu F; Wang Z Sci Total Environ; 2022 Dec; 850():158034. PubMed ID: 35970457 [TBL] [Abstract][Full Text] [Related]
26. Co-hydrothermal carbonization of sewage sludge and rice straw to improve hydrochar quality: Effects of mixing ratio and hydrothermal temperature. Liu X; Peng L; Deng P; Xu Y; Wang P; Tan Q; Zhang C; Dai X Bioresour Technol; 2025 Jan; 415():131665. PubMed ID: 39427848 [TBL] [Abstract][Full Text] [Related]
27. Fuel Characteristics and Removal of AAEMs in Hydrochars Derived from Sewage Sludge and Corn Straw. Guo S; Xiao W; Liu Z; Zhao D; Chen K; Zhao C; Li X; Li G Molecules; 2023 Jan; 28(2):. PubMed ID: 36677840 [TBL] [Abstract][Full Text] [Related]
28. Co-hydrothermal carbonization of sewage sludge and coal slime for clean solid fuel production: a comprehensive assessment of hydrochar fuel characteristics and combustion behavior. Yang X; Wang B; Guo Y; Yang F; Cheng F Biomass Convers Biorefin; 2022 Dec; ():1-13. PubMed ID: 36573093 [TBL] [Abstract][Full Text] [Related]
29. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes. Ipiales RP; Mohedano AF; Diaz-Portuondo E; Diaz E; de la Rubia MA Waste Manag; 2023 Sep; 169():267-275. PubMed ID: 37481937 [TBL] [Abstract][Full Text] [Related]
30. Dechlorination of polyvinyl chloride electric wires by hydrothermal treatment using K Gandon-Ros G; Soler A; Aracil I; Gómez-Rico MF Waste Manag; 2020 Feb; 102():204-211. PubMed ID: 31683076 [TBL] [Abstract][Full Text] [Related]
31. Valorization of cannabis waste via hydrothermal carbonization: solid fuel production and characterization. Kanchanatip E; Prasertsung N; Thasnas N; Grisdanurak N; Wantala K Environ Sci Pollut Res Int; 2023 Aug; 30(39):90318-90327. PubMed ID: 36370310 [TBL] [Abstract][Full Text] [Related]
32. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Nzediegwu C; Naeth MA; Chang SX Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274 [TBL] [Abstract][Full Text] [Related]
33. Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis. Lang Q; Zhang B; Liu Z; Chen Z; Xia Y; Li D; Ma J; Gai C Bioresour Technol; 2019 Jan; 271():75-83. PubMed ID: 30265955 [TBL] [Abstract][Full Text] [Related]
34. Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. Fan F; Yang Z; Li H; Shi Z; Kan H R Soc Open Sci; 2018 Oct; 5(10):181126. PubMed ID: 30473856 [TBL] [Abstract][Full Text] [Related]
35. Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges. Ling M; Ma D; Hu X; Liu Z; Wang D; Feng Q Chemosphere; 2023 Mar; 316():137718. PubMed ID: 36592841 [TBL] [Abstract][Full Text] [Related]
36. Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance. Zhao K; Li Y; Zhou Y; Guo W; Jiang H; Xu Q Bioresour Technol; 2018 Nov; 267():9-16. PubMed ID: 30005272 [TBL] [Abstract][Full Text] [Related]
37. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion. Li CS; Cai RR Sci Total Environ; 2022 Sep; 838(Pt 2):155867. PubMed ID: 35568172 [TBL] [Abstract][Full Text] [Related]
38. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge. Shan G; Li W; Bao S; Hu X; Liu J; Zhu L; Tan W Waste Manag; 2023 Jan; 155():192-198. PubMed ID: 36379168 [TBL] [Abstract][Full Text] [Related]
39. Hydrothermal carbonization of cow dung with human urine as a solvent for hydrochar: An experimental and kinetic study. Gajera ZR; Mungray AA; Rene ER; Mungray AK J Environ Manage; 2023 Feb; 327():116854. PubMed ID: 36455439 [TBL] [Abstract][Full Text] [Related]
40. Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products. Li Q; Lin H; Zhang S; Yuan X; Gholizadeh M; Wang Y; Xiang J; Hu S; Hu X Sci Total Environ; 2021 Oct; 791():148134. PubMed ID: 34118669 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]