These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31972444)
1. Utilization of High throughput microcrystalline cellulose decorated silver nanoparticles as an eco-nematicide on root-knot nematodes. Fouda MMG; Abdelsalam NR; Gohar IMA; Hanfy AEM; Othman SI; Zaitoun AF; Allam AA; Morsy OM; El-Naggar M Colloids Surf B Biointerfaces; 2020 Apr; 188():110805. PubMed ID: 31972444 [TBL] [Abstract][Full Text] [Related]
2. Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Ghareeb RY; Alfy H; Fahmy AA; Ali HM; Abdelsalam NR Sci Rep; 2020 Nov; 10(1):19968. PubMed ID: 33203960 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Duan C; Meng J; Wang X; Meng X; Sun X; Xu Y; Zhao W; Ni Y Carbohydr Polym; 2018 Aug; 193():82-88. PubMed ID: 29773400 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Zahir AA; Rahuman AA Vet Parasitol; 2012 Jul; 187(3-4):511-20. PubMed ID: 22429701 [TBL] [Abstract][Full Text] [Related]
5. Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants. Ghareeb RY; Shams El-Din NGE; Maghraby DME; Ibrahim DSS; Abdel-Megeed A; Abdelsalam NR Sci Rep; 2022 Mar; 12(1):3841. PubMed ID: 35264583 [TBL] [Abstract][Full Text] [Related]
6. [ANTINEMATICIDAL ACTIVITY OF METABOLITES PRODUCED BY SOIL STREPTOMYCETE]. Biliavska LA; Galagan TO; Iutynska GA Mikrobiol Z; 2016 Jul; 78(4):34-47. PubMed ID: 30653878 [TBL] [Abstract][Full Text] [Related]
7. First report of Hajihassani A; Ye W; Hampton BB J Nematol; 2019; 51():1-3. PubMed ID: 31088018 [TBL] [Abstract][Full Text] [Related]
8. Nematocidal and Bactericidal Activities of Green Synthesized Silver Nanoparticles Mediated by Elkobrosy D; Al-Askar AA; El-Gendi H; Su Y; Nabil R; Abdelkhalek A; Behiry S Life (Basel); 2023 Apr; 13(5):. PubMed ID: 37240728 [TBL] [Abstract][Full Text] [Related]
9. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Mochochoko T; Oluwafemi OS; Jumbam DN; Songca SP Carbohydr Polym; 2013 Oct; 98(1):290-4. PubMed ID: 23987347 [TBL] [Abstract][Full Text] [Related]
10. One-Pot Synthesis of Biocompatible Silver Nanoparticle Composites from Cellulose and Keratin: Characterization and Antimicrobial Activity. Tran CD; Prosenc F; Franko M; Benzi G ACS Appl Mater Interfaces; 2016 Dec; 8(50):34791-34801. PubMed ID: 27998108 [TBL] [Abstract][Full Text] [Related]
11. Root-Knot Nematode ( Kim S; Kim HM; Seo HJ; Yeon J; Park AR; Yu NH; Jeong SG; Chang JY; Kim JC; Park HW J Microbiol Biotechnol; 2022 Aug; 32(8):960-966. PubMed ID: 35879271 [TBL] [Abstract][Full Text] [Related]
12. "Miswak" Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis. Shaik MR; Albalawi GH; Khan ST; Khan M; Adil SF; Kuniyil M; Al-Warthan A; Siddiqui MR; Alkhathlan HZ; Khan M Molecules; 2016 Nov; 21(11):. PubMed ID: 27827968 [TBL] [Abstract][Full Text] [Related]
13. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles. Hussain MA; Shah A; Jantan I; Shah MR; Tahir MN; Ahmad R; Bukhari SN Int J Nanomedicine; 2015; 10():2079-88. PubMed ID: 25844038 [TBL] [Abstract][Full Text] [Related]
14. Photo-reduction of Ag nanoparticles by using cellulose-based micelles as soft templates: Catalytic and antimicrobial activities. Hu H; Wu X; Wang H; Wang H; Zhou J Carbohydr Polym; 2019 Jun; 213():419-427. PubMed ID: 30879687 [TBL] [Abstract][Full Text] [Related]
15. Utilizing bio-synthesis of nanomaterials as biological agents for controlling soil-borne diseases in pepper plants: root-knot nematodes and root rot fungus. Y Ghareeb R; Belal EB; El-Khateeb NMM; Shreef BA BMC Plant Biol; 2024 Feb; 24(1):110. PubMed ID: 38355449 [TBL] [Abstract][Full Text] [Related]
16. Differences in parasitism of root-knot nematodes ( Hamidi N; Hajihassani A J Nematol; 2020; 52():1-10. PubMed ID: 32329294 [TBL] [Abstract][Full Text] [Related]
17. Eco-Friendly Synthesis of Silver Nanoparticles Through Economical Methods and Assessment of Toxicity Through Oxidative Stress Analysis in the Labeo Rohita. Khan MS; Qureshi NA; Jabeen F; Asghar MS; Shakeel M; Fakhar-E-Alam M Biol Trace Elem Res; 2017 Apr; 176(2):416-428. PubMed ID: 27587025 [TBL] [Abstract][Full Text] [Related]
18. Control of root-knot nematodes using Waltheria indica producing 4-quinolone alkaloids. Jang JY; Le Dang Q; Choi GJ; Park HW; Kim JC Pest Manag Sci; 2019 Aug; 75(8):2264-2270. PubMed ID: 30701660 [TBL] [Abstract][Full Text] [Related]
19. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Rehan M; Barhoum A; Van Assche G; Dufresne A; Gätjen L; Wilken R Int J Biol Macromol; 2017 May; 98():877-886. PubMed ID: 28215565 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial cellulose paper made with silver-coated gold nanoparticles. Tsai TT; Huang TH; Chang CJ; Yi-Ju Ho N; Tseng YT; Chen CF Sci Rep; 2017 Jun; 7(1):3155. PubMed ID: 28600506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]