These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31972448)

  • 1. Can machine learning account for human visual object shape similarity judgments?
    German JS; Jacobs RA
    Vision Res; 2020 Feb; 167():87-99. PubMed ID: 31972448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scene context is predictive of unconstrained object similarity judgments.
    Magri C; Elmoznino E; Bonner MF
    Cognition; 2023 Oct; 239():105535. PubMed ID: 37481806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet.
    Rolls ET; Mills WPC
    Neurobiol Learn Mem; 2018 Jul; 152():20-31. PubMed ID: 29723671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local features and global shape information in object classification by deep convolutional neural networks.
    Baker N; Lu H; Erlikhman G; Kellman PJ
    Vision Res; 2020 Jul; 172():46-61. PubMed ID: 32413803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting object constancy: effects of active exploration and shape morphing on similarity judgments of novel objects.
    Lee H; Wallraven C
    Exp Brain Res; 2013 Mar; 225(2):277-89. PubMed ID: 23263625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity dependency of the change in ERP component N1 accompanying with the object recognition learning.
    Tokudome W; Wang G
    Int J Psychophysiol; 2012 Jan; 83(1):102-9. PubMed ID: 22115890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual shape perception as Bayesian inference of 3D object-centered shape representations.
    Erdogan G; Jacobs RA
    Psychol Rev; 2017 Nov; 124(6):740-761. PubMed ID: 28910127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using drawings and deep neural networks to characterize the building blocks of human visual similarity.
    Mukherjee K; Rogers TT
    Mem Cognit; 2024 May; ():. PubMed ID: 38814385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetrical Viewpoint Representations in Face-Selective Regions Convey an Advantage in the Perception and Recognition of Faces.
    Flack TR; Harris RJ; Young AW; Andrews TJ
    J Neurosci; 2019 May; 39(19):3741-3751. PubMed ID: 30842248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the multidimensional mental representations of natural objects underlying human similarity judgements.
    Hebart MN; Zheng CY; Pereira F; Baker CI
    Nat Hum Behav; 2020 Nov; 4(11):1173-1185. PubMed ID: 33046861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception without preconception: comparison between the human and machine learner in recognition of tissues from histological sections.
    Barui S; Sanyal P; Rajmohan KS; Malik A; Dudani S
    Sci Rep; 2022 Sep; 12(1):16420. PubMed ID: 36180472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning viewpoint invariant object representations using a temporal coherence principle.
    Einhäuser W; Hipp J; Eggert J; Körner E; König P
    Biol Cybern; 2005 Jul; 93(1):79-90. PubMed ID: 16021516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.