BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31972448)

  • 1. Can machine learning account for human visual object shape similarity judgments?
    German JS; Jacobs RA
    Vision Res; 2020 Feb; 167():87-99. PubMed ID: 31972448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scene context is predictive of unconstrained object similarity judgments.
    Magri C; Elmoznino E; Bonner MF
    Cognition; 2023 Oct; 239():105535. PubMed ID: 37481806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet.
    Rolls ET; Mills WPC
    Neurobiol Learn Mem; 2018 Jul; 152():20-31. PubMed ID: 29723671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local features and global shape information in object classification by deep convolutional neural networks.
    Baker N; Lu H; Erlikhman G; Kellman PJ
    Vision Res; 2020 Jul; 172():46-61. PubMed ID: 32413803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting object constancy: effects of active exploration and shape morphing on similarity judgments of novel objects.
    Lee H; Wallraven C
    Exp Brain Res; 2013 Mar; 225(2):277-89. PubMed ID: 23263625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity dependency of the change in ERP component N1 accompanying with the object recognition learning.
    Tokudome W; Wang G
    Int J Psychophysiol; 2012 Jan; 83(1):102-9. PubMed ID: 22115890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual shape perception as Bayesian inference of 3D object-centered shape representations.
    Erdogan G; Jacobs RA
    Psychol Rev; 2017 Nov; 124(6):740-761. PubMed ID: 28910127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using drawings and deep neural networks to characterize the building blocks of human visual similarity.
    Mukherjee K; Rogers TT
    Mem Cognit; 2024 May; ():. PubMed ID: 38814385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetrical Viewpoint Representations in Face-Selective Regions Convey an Advantage in the Perception and Recognition of Faces.
    Flack TR; Harris RJ; Young AW; Andrews TJ
    J Neurosci; 2019 May; 39(19):3741-3751. PubMed ID: 30842248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the multidimensional mental representations of natural objects underlying human similarity judgements.
    Hebart MN; Zheng CY; Pereira F; Baker CI
    Nat Hum Behav; 2020 Nov; 4(11):1173-1185. PubMed ID: 33046861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception without preconception: comparison between the human and machine learner in recognition of tissues from histological sections.
    Barui S; Sanyal P; Rajmohan KS; Malik A; Dudani S
    Sci Rep; 2022 Sep; 12(1):16420. PubMed ID: 36180472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning viewpoint invariant object representations using a temporal coherence principle.
    Einhäuser W; Hipp J; Eggert J; Körner E; König P
    Biol Cybern; 2005 Jul; 93(1):79-90. PubMed ID: 16021516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.