These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31972457)

  • 1. Environmental performances of a modern waste-to-energy unit in the light of the 2019 BREF document.
    Ardolino F; Boccia C; Arena U
    Waste Manag; 2020 Mar; 104():94-103. PubMed ID: 31972457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.
    Arena U; Ardolino F; Di Gregorio F
    Waste Manag; 2015 Jul; 41():60-74. PubMed ID: 25899036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the environmental performances of waste-to-energy plants: The case-study of the EMAS-registered waste incinerators in Italy.
    Comoglio C; Castelluccio S; Scarrone A; Onofrio M; Fiore S
    Waste Manag; 2022 Nov; 153():209-218. PubMed ID: 36113342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun City.
    Cheng H; Zhang Y; Meng A; Li Q
    Environ Sci Technol; 2007 Nov; 41(21):7509-15. PubMed ID: 18044534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic and technology-specific modeling of emissions from municipal solid-waste incineration.
    Koehler A; Peyer F; Salzmann C; Saner D
    Environ Sci Technol; 2011 Apr; 45(8):3487-95. PubMed ID: 21410192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
    Medina Jimenez AC; Nordi GH; Palacios Bereche MC; Bereche RP; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Nov; 35(11):1137-1148. PubMed ID: 28893135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of resource recovery from waste incineration residues--the case of zinc.
    Fellner J; Lederer J; Purgar A; Winterstetter A; Rechberger H; Winter F; Laner D
    Waste Manag; 2015 Mar; 37():95-103. PubMed ID: 25458759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.
    Panepinto D; Zanetti MC
    Waste Manag; 2018 Mar; 73():332-341. PubMed ID: 28774585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.
    De Gisi S; Chiarelli A; Tagliente L; Notarnicola M
    Waste Manag; 2018 Mar; 73():271-286. PubMed ID: 28483367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and energy performances of the Italian municipal solid waste incineration system in a life cycle perspective.
    Sisani F; Maalouf A; Di Maria F
    Waste Manag Res; 2022 Feb; 40(2):218-226. PubMed ID: 33845709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.