These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31972524)

  • 1. A perspective of stepwise utilization of hazardous zinc plant purification residue based on selective alkaline leaching of zinc.
    Huang Y; Geng Y; Han G; Cao Y; Peng W; Zhu X; Zhang TA; Dou Z
    J Hazard Mater; 2020 May; 389():122090. PubMed ID: 31972524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.
    Maryam Sadeghi S; Vanpeteghem G; Neto IFF; Soares HMVM
    Waste Manag; 2017 Feb; 60():696-705. PubMed ID: 28007473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of Selective Recovery of Zinc and Manganese from Alkaline Batteries Scrap by Leaching and Precipitation.
    Skrzekut T; Piotrowicz A; Noga P; Wędrychowicz M; Bydałek AW
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study.
    Abid Charef S; Affoune AM; Caballero A; Cruz-Yusta M; Morales J
    Waste Manag; 2017 Oct; 68():518-526. PubMed ID: 28669497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants.
    Sayilgan E; Kukrer T; Yigit NO; Civelekoglu G; Kitis M
    J Hazard Mater; 2010 Jan; 173(1-3):137-43. PubMed ID: 19744786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.
    Li M; Zheng S; Liu B; Du H; Dreisinger DB; Tafaghodi L; Zhang Y
    Waste Manag; 2017 Jul; 65():128-138. PubMed ID: 28392119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave assisted chloride leaching of zinc plant residues.
    Abo Atia T; Spooren J
    J Hazard Mater; 2020 Nov; 398():122814. PubMed ID: 32768856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues.
    Sethurajan M; Huguenot D; Jain R; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Hazard Mater; 2017 Feb; 324(Pt A):71-82. PubMed ID: 26832075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of lead and zinc in scrubber residues from MSW combustion using soluble phosphates.
    Geysen D; Imbrechts K; Vandecasteele C; Jaspers M; Wauters G
    Waste Manag; 2004; 24(5):471-81. PubMed ID: 15120431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching.
    Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T
    J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and effective process for recycling zinc-rich paint residue.
    Xing P; Ma B; Wang C; Wang L; Chen Y
    Waste Manag; 2018 Jun; 76():234-241. PubMed ID: 29548828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy.
    Ju S; Zhang Y; Zhang Y; Xue P; Wang Y
    J Hazard Mater; 2011 Aug; 192(2):554-8. PubMed ID: 21684683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon.
    Li M; Peng B; Chai L; Peng N; Yan H; Hou D
    J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of zinc from leach residues with minimum iron dissolution using oxidative leaching.
    Alizadeh R; Rashchi F; Vahidi E
    Waste Manag Res; 2011 Feb; 29(2):165-71. PubMed ID: 20516004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil).
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7504-16. PubMed ID: 26728285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.
    Youcai Z; Stanforth R
    J Hazard Mater; 2000 Dec; 80(1-3):223-40. PubMed ID: 11080580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.