These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31972524)
21. [Leaching characteristics of heavy metals in MSW fly ash under different condition]. Yan JH; Li JX; Chi Y; Ni MJ; Cen KF Huan Jing Ke Xue; 2004 Jul; 25(4):139-42. PubMed ID: 15515954 [TBL] [Abstract][Full Text] [Related]
22. A study on Zn recovery from other metals in the spent mixed batteries through a sequence of hydrometallurgical processes. Shin DJ; Joo SH; Oh CH; Wang JP; Park JT; Min DJ; Shin SM Environ Technol; 2019 Nov; 40(26):3512-3522. PubMed ID: 29799331 [TBL] [Abstract][Full Text] [Related]
23. Leaching properties of electric arc furnace dust prior/following alkaline extraction. Orescanin V; Mikelić L; Sofilić T; Rastovcan-Mioc A; Uzarević K; Medunić G; Elez L; Lulić S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):323-9. PubMed ID: 17365298 [TBL] [Abstract][Full Text] [Related]
24. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition. Jin Z; Liu T; Yang Y; Jackson D Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122 [TBL] [Abstract][Full Text] [Related]
25. Leaching and solvent extraction purification of zinc from Mehdiabad complex oxide ore. Soltani F; Darabi H; Aram R; Ghadiri M Sci Rep; 2021 Jan; 11(1):1566. PubMed ID: 33452391 [TBL] [Abstract][Full Text] [Related]
26. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis. Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046 [TBL] [Abstract][Full Text] [Related]
27. Highly efficient oxidative-alkaline-leaching process of vanadium-chromium reducing residue and parameters optimization by response surface methodology. Peng H; Shang Q; Chen R; Zhang L; Chen Y; Guo J Environ Technol; 2022 Jun; 43(14):2167-2176. PubMed ID: 33356978 [TBL] [Abstract][Full Text] [Related]
28. Hydrometallurgical recovery of zinc from ashes of automobile tire wastes. Kinoshita T; Yamaguchi K; Akita S; Nii S; Kawaizumi F; Takahashi K Chemosphere; 2005 May; 59(8):1105-11. PubMed ID: 15833484 [TBL] [Abstract][Full Text] [Related]
29. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Tang J; Steenari BM Waste Manag; 2016 Feb; 48():315-322. PubMed ID: 26463013 [TBL] [Abstract][Full Text] [Related]
30. Recovery of zinc and cadmium from spent batteries using Cyphos IL 102 via solvent extraction route and synthesis of Zn and Cd oxide nanoparticles. Singh R; Mahandra H; Gupta B Waste Manag; 2017 Sep; 67():240-252. PubMed ID: 28578861 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process. Wang M; Li AD; Kong JZ; Gong YP; Zhao C; Tang YF; Wu D Nanoscale Res Lett; 2018 Feb; 13(1):47. PubMed ID: 29426976 [TBL] [Abstract][Full Text] [Related]
32. Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola. Yang JG; Yang JY; Peng CH; Tang CB; Zhou KC Environ Technol; 2009 Jun; 30(7):693-700. PubMed ID: 19705606 [TBL] [Abstract][Full Text] [Related]
33. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil. Liu T; Li F; Jin Z; Yang Y Environ Pollut; 2018 Jul; 238():359-368. PubMed ID: 29574360 [TBL] [Abstract][Full Text] [Related]
34. Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach. Ettler V; Mihaljevic M; Sebek O; Strnad L J Hazard Mater; 2005 May; 121(1-3):149-57. PubMed ID: 15885416 [TBL] [Abstract][Full Text] [Related]
35. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose. Biswas RK; Karmakar AK; Kumar SL Waste Manag; 2016 May; 51():174-181. PubMed ID: 26564257 [TBL] [Abstract][Full Text] [Related]
36. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. Leclerc N; Meux E; Lecuire JM J Hazard Mater; 2002 Apr; 91(1-3):257-70. PubMed ID: 11900917 [TBL] [Abstract][Full Text] [Related]
37. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching. Wang J; Wang S; Olayiwola A; Yang N; Liu B; Weigand JJ; Wenzel M; Du H J Hazard Mater; 2021 Aug; 416():125849. PubMed ID: 33894437 [TBL] [Abstract][Full Text] [Related]
38. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust. Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877 [TBL] [Abstract][Full Text] [Related]
39. Leaching behavior of Pb and Zn in air pollution control residues and their modeling prediction. Zhang H; He PJ; Shao LM; Feng JH; Cao QK J Environ Sci (China); 2006; 18(3):583-6. PubMed ID: 17294661 [TBL] [Abstract][Full Text] [Related]
40. Preparation and characterization of CS/β-CD/Nano-ZnO composite porous membrane optimized by Box-Behnken for the adsorption of Congo red. Yan X; Zhang X; Li Q Environ Sci Pollut Res Int; 2018 Aug; 25(22):22244-22258. PubMed ID: 29804255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]