BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31972540)

  • 1. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World.
    Kimura K; Reichert JF; Olson A; Pouya OR; Wang X; Moussavi Z; Kelly DM
    Sci Rep; 2017 Dec; 7(1):18109. PubMed ID: 29273759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning.
    Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S
    Front Robot AI; 2019; 6():50. PubMed ID: 33501066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age differences in spatial memory are mitigated during naturalistic navigation.
    Hill PF; Bermudez S; McAvan AS; Garren JD; Grilli MD; Barnes CA; Ekstrom AD
    bioRxiv; 2023 Oct; ():. PubMed ID: 36747699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world.
    Kim A; Schweighofer N; Finley JM
    J Neuroeng Rehabil; 2019 Sep; 16(1):113. PubMed ID: 31521167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Reality for Spatial Navigation.
    Jeung S; Hilton C; Berg T; Gehrke L; Gramann K
    Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Virtual Floor Maze Test - Effects of Distal Visual Cues and Correlations With Executive Function in Healthy Adults.
    Martelli D; Prado A; Xia B; Verghese J; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2229-2236. PubMed ID: 31478863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of training-Virtual reality training with augmented multisensory cues improves user experience during training and task performance in the real world.
    Cooper N; Millela F; Cant I; White MD; Meyer G
    PLoS One; 2021; 16(3):e0248225. PubMed ID: 33760859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress affects navigation strategies in immersive virtual reality.
    Varshney A; Munns ME; Kasowski J; Zhou M; He C; Grafton ST; Giesbrecht B; Hegarty M; Beyeler M
    Sci Rep; 2024 Mar; 14(1):5949. PubMed ID: 38467699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Reality Aids Game Navigation: Evidence from the Hypertext Lostness Measure.
    Ferguson C; van den Broek EL; van Oostendorp H; de Redelijkheid S; Giezeman GJ
    Cyberpsychol Behav Soc Netw; 2020 Sep; 23(9):635-641. PubMed ID: 32589455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immersive virtual reality technology in a three-dimensional virtual simulated store: Investigating telepresence and usability.
    Schnack A; Wright MJ; Holdershaw JL
    Food Res Int; 2019 Mar; 117():40-49. PubMed ID: 30736922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off the shelf: Investigating transfer of learning using commercially available virtual reality equipment.
    Markwell LT; Cochran K; Porter JM
    PLoS One; 2023; 18(10):e0279856. PubMed ID: 37788277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial.
    Frederiksen JG; Sørensen SMD; Konge L; Svendsen MBS; Nobel-Jørgensen M; Bjerrum F; Andersen SAW
    Surg Endosc; 2020 Mar; 34(3):1244-1252. PubMed ID: 31172325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age differences in spatial memory are mitigated during naturalistic navigation.
    Hill PF; Bermudez S; McAvan AS; Garren JD; Grilli MD; Barnes CA; Ekstrom AD
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2024 Mar; ():1-25. PubMed ID: 38445641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of navigation method and visual display on distance perception in a large-scale virtual building.
    Li H; Mavros P; Krukar J; Hölscher C
    Cogn Process; 2021 May; 22(2):239-259. PubMed ID: 33564939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information.
    Starrett MJ; Ekstrom AD
    Front Hum Neurosci; 2018; 12():281. PubMed ID: 30050422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity.
    Peterson SM; Rios E; Ferris DP
    J Neurophysiol; 2018 Oct; 120(4):1998-2010. PubMed ID: 30044183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual environments for the transfer of navigation skills in the blind: a comparison of directed instruction vs. video game based learning approaches.
    Connors EC; Chrastil ER; Sánchez J; Merabet LB
    Front Hum Neurosci; 2014; 8():223. PubMed ID: 24822044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual Reality in Anatomy: A Pilot Study Evaluating Different Delivery Modalities.
    Birbara NS; Sammut C; Pather N
    Anat Sci Educ; 2020 Jul; 13(4):445-457. PubMed ID: 31587471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.