BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 31972553)

  • 1. Curcumin-crosslinked acellular bovine pericardium for the application of calcification inhibition heart valves.
    Liu J; Li B; Jing H; Qin Y; Wu Y; Kong D; Leng X; Wang Z
    Biomed Mater; 2020 May; 15(4):045002. PubMed ID: 31972553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of hydrogen bonding and chemical covalent crosslinking to fabricate a novel swim-bladder-derived dry heart valve material yields advantageous mechanical and biological properties.
    Lan X; Zhao Q; Zhang J; Lei Y; Wang Y
    Biomed Mater; 2021 Feb; 16(1):015014. PubMed ID: 33586662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinking porcine aortic valve by radical polymerization for the preparation of BHVs with improved cytocompatibility, mild immune response, and reduced calcification.
    Xu L; Yang F; Ge Y; Guo G; Wang Y
    J Biomater Appl; 2021 Apr; 35(9):1218-1232. PubMed ID: 33478311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties.
    Huang X; Zheng C; Ding K; Zhang S; Lei Y; Wei Q; Yang L; Wang Y
    Acta Biomater; 2022 Dec; 154():244-258. PubMed ID: 36306983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic-polymerization crosslinked tissue-siloxane hybrid as potential biomaterial for bioprosthetic heart valves.
    Yang F; He H; Xu L; Jin L; Guo G; Wang Y
    J Biomed Mater Res A; 2021 May; 109(5):754-765. PubMed ID: 32681740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate.
    Rapoport HS; Connolly JM; Fulmer J; Dai N; Murti BH; Gorman RC; Gorman JH; Alferiev I; Levy RJ
    Biomaterials; 2007 Feb; 28(4):690-9. PubMed ID: 17027944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different?
    Zhuravleva IY; Karpova EV; Dokuchaeva AA; Titov AT; Timchenko TP; Vasilieva MB
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swim Bladder as a Novel Biomaterial for Cardiovascular Materials with Anti-Calcification Properties.
    Liu J; Li B; Jing H; Wu Y; Kong D; Leng X; Wang Z
    Adv Healthc Mater; 2020 Jan; 9(2):e1901154. PubMed ID: 31815367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double crosslinking decellularized bovine pericardium of dialdehyde chondroitin sulfate and zwitterionic copolymer for bioprosthetic heart valves with enhanced antithrombogenic, anti-inflammatory and anti-calcification properties.
    Shi S; Hu M; Peng X; Cheng C; Feng S; Pu X; Yu X
    J Mater Chem B; 2024 Apr; 12(14):3417-3435. PubMed ID: 38525920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel tissue treatment to reduce mineralization of bovine pericardial heart valves.
    Meuris B; De Praetere H; Strasly M; Trabucco P; Lai JC; Verbrugghe P; Herijgers P
    J Thorac Cardiovasc Surg; 2018 Jul; 156(1):197-206. PubMed ID: 29572021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties.
    Yu T; Pu H; Chen X; Kong Q; Chen C; Li G; Jiang Q; Wang Y
    Acta Biomater; 2023 Apr; 160():45-58. PubMed ID: 36764592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential.
    Yu T; Zheng C; Chen X; Pu H; Li G; Jiang Q; Wang Y; Guo Y
    Acta Biomater; 2023 Apr; 160():87-97. PubMed ID: 36812953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tropoelastin and lysyl oxidase treatments increased the content of insoluble elastin in bioprosthetic heart valves.
    Lei Y; Xia Y; Wang Y
    J Biomater Appl; 2018 Nov; 33(5):637-646. PubMed ID: 30335541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EGCG and enzymatic cross-linking combined treatments for improving elastin stability and reducing calcification in bioprosthetic heart valves.
    Lei Y; Yang L; Guo G; Wang Y
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1551-1559. PubMed ID: 30267643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods.
    Jorge-Herrero E; Fonseca C; Barge AP; Turnay J; Olmo N; Fernández P; Lizarbe MA; García Páez JM
    Artif Organs; 2010 May; 34(5):E168-76. PubMed ID: 20633147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves.
    Hu M; Peng X; Zhao Y; Yu X; Cheng C; Yu X
    Biomater Sci; 2021 Nov; 9(22):7617-7635. PubMed ID: 34671797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel anti-calcification strategy of bovine pericardium using sodium bisulfite modification.
    Zhou J; Jiang H; Wang D; Hu S
    J Heart Valve Dis; 2009 Mar; 18(2):180-5; discussion 186. PubMed ID: 19455893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dialdehyde xanthan gum and curcumin synergistically crosslinked bioprosthetic valve leaflets with anti-thrombotic, anti-inflammatory and anti-calcification properties.
    Hu M; Peng X; Shi S; Wan C; Cheng C; Yu X
    Carbohydr Polym; 2023 Jun; 310():120724. PubMed ID: 36925249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves.
    Aguiari P; Iop L; Favaretto F; Fidalgo CM; Naso F; Milan G; Vindigni V; Spina M; Bassetto F; Bagno A; Vettor R; Gerosa G
    Biomed Mater; 2017 Feb; 12(1):015021. PubMed ID: 28157718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Immune Responses and Calcification of Bioprostheses in the α1,3-Galactosyltransferase Knockout Mouse.
    Sung Jeong W; Jin Kim Y; Lim HG; Jung S; Ryul Lee J
    J Heart Valve Dis; 2016 Mar; 25(2):253-261. PubMed ID: 27989076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.