These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31973021)

  • 1. Current and Emerging Methods for the Synthesis of Single-Stranded DNA.
    Hao M; Qiao J; Qi H
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31973021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Pot Synthesis of Defined-Length ssDNA for Multiscaffold DNA Origami.
    Noteborn WEM; Abendstein L; Sharp TH
    Bioconjug Chem; 2021 Jan; 32(1):94-98. PubMed ID: 33307668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid in vitro production of single-stranded DNA.
    Minev D; Guerra R; Kishi JY; Smith C; Krieg E; Said K; Hornick A; Sasaki HM; Filsinger G; Beliveau BJ; Yin P; Church GM; Shih WM
    Nucleic Acids Res; 2019 Dec; 47(22):11956-11962. PubMed ID: 31713635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the synthesis of single-stranded DNA in vitro.
    Li S; Tan W; Jia X; Miao Q; Liu Y; Yang D
    Biotechnol J; 2024 Apr; 19(4):e2400026. PubMed ID: 38622795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic DNA-Assisted Mass Production of Arbitrary Single-Stranded DNA.
    Zhang Q; Xia K; Jiang M; Li Q; Chen W; Han M; Li W; Ke R; Wang F; Zhao Y; Liu Y; Fan C; Gu H
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202212011. PubMed ID: 36347780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phage-free production of artificial ssDNA with Escherichia coli.
    Behler KL; Honemann MN; Silva-Santos AR; Dietz H; Weuster-Botz D
    Biotechnol Bioeng; 2022 Oct; 119(10):2878-2889. PubMed ID: 35791494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-stranded DNA (ssDNA) production in DNA aptamer generation.
    Marimuthu C; Tang TH; Tominaga J; Tan SC; Gopinath SC
    Analyst; 2012 Mar; 137(6):1307-15. PubMed ID: 22314701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation.
    Gu R; Oweida T; Yingling YG; Chilkoti A; Zauscher S
    Biomacromolecules; 2018 Aug; 19(8):3525-3535. PubMed ID: 30011192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro synthesis of gene-length single-stranded DNA.
    Veneziano R; Shepherd TR; Ratanalert S; Bellou L; Tao C; Bathe M
    Sci Rep; 2018 Apr; 8(1):6548. PubMed ID: 29695837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5'-DMT-protected double-stranded DNA: Synthesis and competence to enzymatic reactions.
    Shchur VV; Burankova YP; Zhauniarovich AI; Dzichenka YV; Usanov SA; Yantsevich AV
    Anal Biochem; 2021 Mar; 617():114115. PubMed ID: 33508272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale structure and dynamics of ABOBEC3G complexes with single-stranded DNA.
    Shlyakhtenko LS; Lushnikov AY; Miyagi A; Li M; Harris RS; Lyubchenko YL
    Biochemistry; 2012 Aug; 51(32):6432-40. PubMed ID: 22809226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Nascent Polymer Catch-and-Release Enables Scalable Isolation of Multi-Kilobase Single-Stranded DNA.
    Krieg E; Shih WM
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):714-718. PubMed ID: 29210156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact quantum dot surface modification to enable emergent behaviors in quantum dot-DNA composites.
    Dehankar A; Porter T; Johnson JA; Castro CE; Winter JO
    J Chem Phys; 2019 Oct; 151(14):144706. PubMed ID: 31615228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures.
    Zhang Z; Zhang H; Wang F; Zhang G; Zhou T; Wang X; Liu S; Liu T
    Macromol Rapid Commun; 2018 Aug; 39(15):e1800263. PubMed ID: 29952041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Protein Dynamics on Low-Complexity Single-Stranded DNA Curtains.
    Schaub JM; Zhang H; Soniat MM; Finkelstein IJ
    Langmuir; 2018 Dec; 34(49):14882-14890. PubMed ID: 30044093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of ring single-stranded DNA measured by DNA origami structures.
    Roth Weizman E; Glick Azaria A; Garini Y
    Biophys J; 2022 Jun; 121(11):2127-2134. PubMed ID: 35490298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.