These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31973061)

  • 1. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opto-hydrodynamic tweezers.
    Vasantham S; Kotnala A; Promovych Y; Garstecki P; Derzsi L
    Lab Chip; 2024 Jan; 24(3):517-527. PubMed ID: 38165913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells.
    Deng H; Chen D; Wang R; Li F; Luo Z; Deng S; Yin J; Yu L; Zhang W; Yuan L
    Nanoscale; 2022 May; 14(18):6941-6948. PubMed ID: 35466971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle trapping with optical nanofibers: a review [Invited].
    Praveen Kamath P; Sil S; Truong VG; Nic Chormaic S
    Biomed Opt Express; 2023 Dec; 14(12):6172-6189. PubMed ID: 38420322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.
    Ti C; Thomas GM; Ren Y; Zhang R; Wen Q; Liu Y
    Biomed Opt Express; 2015 Jul; 6(7):2325-36. PubMed ID: 26203364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
    Rong Q; Zhou Y; Yin X; Shao Z; Qiao X
    Biomed Opt Express; 2017 Sep; 8(9):4096-4107. PubMed ID: 28966849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphibious Hybrid Laser Tweezers for Fluid and Solid Domains.
    Zhu R; Shen T; Gu Z; Shi Z; Dou L; Liu Y; Zhuang S; Gu F
    ACS Nano; 2024 Aug; 18(34):23232-23242. PubMed ID: 39145514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell biomagnifier for optical nanoscopes and nanotweezers.
    Li Y; Liu X; Li B
    Light Sci Appl; 2019; 8():61. PubMed ID: 31645911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opto-thermophoretic fiber tweezers.
    Kotnala A; Zheng Y
    Nanophotonics; 2019 Mar; 8(3):475-485. PubMed ID: 34290953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Multimode-Single Mode Polymer Fiber Tweezers for Single Cell Trapping and Identification with Improved Performance.
    Rodrigues SM; Paiva JS; Ribeiro RSR; Soppera O; Cunha JPS; Jorge PAS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective.
    Blázquez-Castro A; Fernández-Piqueras J; Santos J
    Front Bioeng Biotechnol; 2020; 8():580937. PubMed ID: 33072730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.
    Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P
    Front Chem; 2020; 8():593398. PubMed ID: 33240853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graded-index optical fiber tweezers with long manipulation length.
    Gong Y; Huang W; Liu QF; Wu Y; Rao Y; Peng GD; Lang J; Zhang K
    Opt Express; 2014 Oct; 22(21):25267-76. PubMed ID: 25401560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.