These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31973109)

  • 1. A Wide-Range and Calibration-Free Spectrometer Which Combines Wavelength Modulation and Direct Absorption Spectroscopy with Cavity Ringdown Spectroscopy.
    Wang Z; Du Y; Ding Y; Peng Z
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: initial test with elemental Hg.
    Sahay P; Scherrer ST; Wang C
    Rev Sci Instrum; 2012 Sep; 83(9):095109. PubMed ID: 23020421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid, time-division multiplexed, direct absorption- and wavelength modulation-spectroscopy.
    Klein A; Witzel O; Ebert V
    Sensors (Basel); 2014 Nov; 14(11):21497-513. PubMed ID: 25405508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design.
    Hahn JW; Yoo YS; Lee JY; Kim JW; Lee HW
    Appl Opt; 1999 Mar; 38(9):1859-66. PubMed ID: 18305817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise wavelength calibration in continuous-wave cavity ringdown spectroscopy based on the HITRAN database.
    Tan Z; Long X; Yuan J; Huang Y; Zhang B
    Appl Opt; 2009 Apr; 48(12):2344-9. PubMed ID: 19381187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous wave cavity ringdown spectroscopy incorporating with an off-axis arrangement, white noise perturbation, and optical re-injection.
    Chu W; Li Z; Gu J; Zhang Q; Chen Y; Zhao D
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37947499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saturation dynamics and working limits of saturated absorption cavity ringdown spectroscopy.
    Sadiek I; Friedrichs G
    Phys Chem Chem Phys; 2016 Aug; 18(33):22978-89. PubMed ID: 27488884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules.
    He Y; Orr BJ
    Appl Opt; 2005 Nov; 44(31):6752-61. PubMed ID: 16270564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exploratory study on online quantification of isoprene in human breath using cavity ringdown spectroscopy in the ultraviolet.
    Li Q; Li J; Wei X; Li Y; Sun M
    Anal Chim Acta; 2020 Sep; 1131():18-24. PubMed ID: 32928476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A precise high-resolution near infrared continuous wave cavity ringdown spectrometer using a Fourier transform based wavelength calibration.
    Fehling C; Friedrichs G
    Rev Sci Instrum; 2010 May; 81(5):053109. PubMed ID: 20515126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method of adaptive wide dynamic range gas concentration detection based on optimized direct absorption spectroscopy.
    Wang Q; Sun P; Zhang Z; Cai Y; Huang W; Pang T; Wu B; Xia H; Guo Q
    Opt Express; 2023 May; 31(10):16770-16780. PubMed ID: 37157749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive, Calibration-Free WM-DAS Method for Recovering Absorbance-Part I: Theoretical Analysis.
    Peng Z; Du Y; Ding Y
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Sensitive, Calibration-Free WM-DAS Method for Recovering Absorbance-Part II: Experimental Analysis.
    Peng Z; Du Y; Ding Y
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents.
    Awtry AR; Miller JH
    Appl Phys B; 2002; 75(2-3):255-60. PubMed ID: 12599396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength modulation spectroscopy for recovering absolute absorbance.
    Du Y; Peng Z; Ding Y
    Opt Express; 2018 Apr; 26(7):9263-9272. PubMed ID: 29715880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed multi-pass tunable diode laser absorption spectrometer based on frequency-modulation spectroscopy.
    Li C; Shao L; Meng H; Wei J; Qiu X; He Q; Ma W; Deng L; Chen Y
    Opt Express; 2018 Oct; 26(22):29330-29339. PubMed ID: 30470098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection.
    Ayers JD; Apodaca RL; Simpson WR; Baer DS
    Appl Opt; 2005 Nov; 44(33):7239-42. PubMed ID: 16318196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of broadband absorbers in the near-infrared region based on Wavelength Modulation United Absorption Spectroscopy.
    Li S; Sun L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119127. PubMed ID: 33161262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.
    Votava O; Mašát M; Parker AE; Jain C; Fittschen C
    Rev Sci Instrum; 2012 Apr; 83(4):043110. PubMed ID: 22559518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of absolute absorption cross sections for nitrous acid (HONO) in the near-infrared region by the continuous wave cavity ring-down spectroscopy (cw-CRDS) technique coupled to laser photolysis.
    Jain C; Morajkar P; Schoemaecker C; Viskolcz B; Fittschen C
    J Phys Chem A; 2011 Oct; 115(39):10720-8. PubMed ID: 21875094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.