BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31973111)

  • 1. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection.
    Kura B; Kalocayova B; Devaux Y; Bartekova M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease.
    Moghaddam AS; Afshari JT; Esmaeili SA; Saburi E; Joneidi Z; Momtazi-Borojeni AA
    Atherosclerosis; 2019 Jun; 285():1-9. PubMed ID: 30939341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between microRNAs and long non-coding RNAs in cardiac development and repair.
    Rotini A; Martínez-Sarrà E; Pozzo E; Sampaolesi M
    Pharmacol Res; 2018 Jan; 127():58-66. PubMed ID: 28629929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy.
    Lai L; Chen J; Wang N; Zhu G; Duan X; Ling F
    Life Sci; 2017 Jan; 169():69-75. PubMed ID: 27633839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian MicroRNAs in Cardioprotection.
    Oyama Y; Bartman CM; Gile J; Eckle T
    Curr Pharm Des; 2017; 23(25):3723-3730. PubMed ID: 28699517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling.
    Teoh JP; Bayoumi AS; Aonuma T; Xu Y; Johnson JA; Su H; Weintraub NL; Tang Y; Kim IM
    J Mol Cell Cardiol; 2018 May; 118():225-236. PubMed ID: 29627294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes.
    Bayoumi AS; Park KM; Wang Y; Teoh JP; Aonuma T; Tang Y; Su H; Weintraub NL; Kim IM
    J Mol Cell Cardiol; 2018 Jan; 114():72-82. PubMed ID: 29122578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases?
    Fichtlscherer S; Zeiher AM; Dimmeler S
    Arterioscler Thromb Vasc Biol; 2011 Nov; 31(11):2383-90. PubMed ID: 22011751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomarker approach to the detection and cardioprotective strategies during anthracycline chemotherapy.
    Ky B; Carver JR
    Heart Fail Clin; 2011 Jul; 7(3):323-31. PubMed ID: 21749884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small Molecules with Big Impacts on Cardiovascular Diseases.
    Mirzadeh Azad F; Arabian M; Maleki M; Malakootian M
    Biochem Genet; 2020 Jun; 58(3):359-383. PubMed ID: 31997044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical cardioprotection and the value of conditioning responses.
    Peart JN; Headrick JP
    Am J Physiol Heart Circ Physiol; 2009 Jun; 296(6):H1705-20. PubMed ID: 19363132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs Mediate Beneficial Effects of Exercise in Heart.
    Bei Y; Tao L; Cretoiu D; Cretoiu SM; Xiao J
    Adv Exp Med Biol; 2017; 1000():261-280. PubMed ID: 29098626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-320 involves in the cardioprotective effect of insulin against myocardial ischemia by targeting survivin.
    Yang N; Wu L; Zhao Y; Zou N; Liu C
    Cell Biochem Funct; 2018 Apr; 36(3):166-171. PubMed ID: 29521436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets.
    Zorio E; Medina P; Rueda J; Millán JM; Arnau MA; Beneyto M; Marín F; Gimeno JR; Osca J; Salvador A; España F; Estellés A
    Cardiovasc Hematol Agents Med Chem; 2009 Jan; 7(1):82-90. PubMed ID: 19149547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics.
    Gangwar RS; Rajagopalan S; Natarajan R; Deiuliis JA
    Am J Hypertens; 2018 Jan; 31(2):150-165. PubMed ID: 29186297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs in cardiovascular ageing.
    Seeger T; Boon RA
    J Physiol; 2016 Apr; 594(8):2085-94. PubMed ID: 26040259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges.
    Zhou SS; Jin JP; Wang JQ; Zhang ZG; Freedman JH; Zheng Y; Cai L
    Acta Pharmacol Sin; 2018 Jul; 39(7):1073-1084. PubMed ID: 29877320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of the Dual Role of MicroRNA-21 in Cardiovascular Diseases: Risk Factor or a Potential Therapeutic Target.
    Jafari-Nozad AM; Rostami N; Esmaeili M; Vahdati H; Hosseini S; Farkhondeh T; Samarghandian S
    Curr Mol Pharmacol; 2024 Jan; ():. PubMed ID: 38369766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protecting the heart in cancer therapy.
    Finet JE; Tang WHW
    F1000Res; 2018; 7():. PubMed ID: 30345014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity.
    Gioffré S; Ricci V; Vavassori C; Ruggeri C; Chiesa M; Alfieri I; Zorzan S; Buzzetti M; Milano G; Scopece A; Castiglioni L; Sironi L; Pompilio G; Colombo GI; D'Alessandra Y
    Biomed Pharmacother; 2019 Feb; 110():1-8. PubMed ID: 30453253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.