These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31973355)
1. Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling. Jankovský O; Šimek P; Luxa J; Sedmidubský D; Tomandl I; Macková A; Mikšová R; Malinský P; Pumera M; Sofer Z Chempluschem; 2015 Sep; 80(9):1399-1407. PubMed ID: 31973355 [TBL] [Abstract][Full Text] [Related]
2. Insight into the mechanism of the thermal reduction of graphite oxide: deuterium-labeled graphite oxide is the key. Sofer Z; Jankovský O; Šimek P; Sedmidubský D; Šturala J; Kosina J; Mikšová R; Macková A; Mikulics M; Pumera M ACS Nano; 2015 May; 9(5):5478-85. PubMed ID: 25894311 [TBL] [Abstract][Full Text] [Related]
3. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides. Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325 [TBL] [Abstract][Full Text] [Related]
4. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. Poh HL; Šimek P; Sofer Z; Pumera M ACS Nano; 2013 Jun; 7(6):5262-72. PubMed ID: 23656223 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Muzyka R; Drewniak S; Pustelny T; Chrubasik M; Gryglewicz G Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29933564 [TBL] [Abstract][Full Text] [Related]
6. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants. Eng AY; Ambrosi A; Chua CK; Saněk F; Sofer Z; Pumera M Chemistry; 2013 Sep; 19(38):12673-83. PubMed ID: 23934966 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy Statistical Analysis. Muzyka R; Drewniak S; Pustelny T; Sajdak M; Drewniak Ł Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562112 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation. Ibarra-Hernández A; Vega-Rios A; Osuna V Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29438280 [TBL] [Abstract][Full Text] [Related]
9. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Poh HL; Šaněk F; Ambrosi A; Zhao G; Sofer Z; Pumera M Nanoscale; 2012 Jun; 4(11):3515-22. PubMed ID: 22535381 [TBL] [Abstract][Full Text] [Related]
10. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chua CK; Sofer Z; Pumera M Chemistry; 2012 Oct; 18(42):13453-9. PubMed ID: 22961662 [TBL] [Abstract][Full Text] [Related]
11. Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling. Sofer Z; Jankovský O; Libánská A; Šimek P; Nováček M; Sedmidubský D; Macková A; Mikšová R; Pumera M Nanoscale; 2015 Jun; 7(23):10535-43. PubMed ID: 26015058 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of graphene oxide-silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. Naeem H; Ajmal M; Qureshi RB; Muntha ST; Farooq M; Siddiq M J Environ Manage; 2019 Jan; 230():199-211. PubMed ID: 30286349 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
14. Green reduction of graphene oxide using alanine. Wang J; Salihi EC; Šiller L Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():1-6. PubMed ID: 28024564 [TBL] [Abstract][Full Text] [Related]
15. Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium. Poh HL; Sofer Z; Luxa J; Pumera M Small; 2014 Apr; 10(8):1529-35. PubMed ID: 24344051 [TBL] [Abstract][Full Text] [Related]
16. Towards graphene iodide: iodination of graphite oxide. Šimek P; Klímová K; Sedmidubský D; Jankovský O; Pumera M; Sofer Z Nanoscale; 2015 Jan; 7(1):261-70. PubMed ID: 25407247 [TBL] [Abstract][Full Text] [Related]
17. High-pressure hydrogenation of graphene: towards graphane. Poh HL; Šaněk F; Sofer Z; Pumera M Nanoscale; 2012 Nov; 4(22):7006-11. PubMed ID: 23041800 [TBL] [Abstract][Full Text] [Related]
18. Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Chee SY; Poh HL; Chua CK; Šaněk F; Sofer Z; Pumera M Phys Chem Chem Phys; 2012 Oct; 14(37):12794-9. PubMed ID: 22874853 [TBL] [Abstract][Full Text] [Related]
19. Green conversion of graphene oxide to graphene nanosheets and its biosafety study. Dasgupta A; Sarkar J; Ghosh M; Bhattacharya A; Mukherjee A; Chattopadhyay D; Acharya K PLoS One; 2017; 12(2):e0171607. PubMed ID: 28158272 [TBL] [Abstract][Full Text] [Related]
20. Biological reduction of graphene oxide using plant leaf extracts. Lee G; Kim BS Biotechnol Prog; 2014; 30(2):463-9. PubMed ID: 24375994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]