BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31973387)

  • 1. Effect of Treatment Methods on Chitin Structure and Its Transformation into Nitrogen-Containing Chemicals.
    Chen X; Gao Y; Wang L; Chen H; Yan N
    Chempluschem; 2015 Oct; 80(10):1565-1572. PubMed ID: 31973387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient conversion of N-acetyl-
    Wang J; Zang H; Jiao S; Wang K; Shang Z; Li H; Lou J
    Sci Total Environ; 2020 Mar; 710():136293. PubMed ID: 31926412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Preparation of 3-Acetamido-5-acetylfuran from N-Acetyl-d-glucosamine by using Commercially Available Aluminum Salts.
    Padovan D; Kobayashi H; Fukuoka A
    ChemSusChem; 2020 Jul; 13(14):3594-3598. PubMed ID: 32410361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of chitin biomass into N-containing chemical 3-acetamido-5-acetylfuran catalyzed by simple Lewis acid.
    Zang H; Feng Y; Zhang M; Wang K; Du Y; Lv Y; Qin Z; Xiao Y
    Carbohydr Res; 2022 Dec; 522():108679. PubMed ID: 36182823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.
    Sadiq AD; Chen X; Yan N; Sperry J
    ChemSusChem; 2018 Feb; 11(3):532-535. PubMed ID: 29247474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of N-Acetylglucosamine to 3-Acetamido-5-Acetylfuran over Al-Exchanged Montmorillonite.
    Yamazaki K; Hiyoshi N; Yamaguchi A
    ChemistryOpen; 2023 Dec; 12(12):e202300148. PubMed ID: 37988701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin.
    Osada M; Miura C; Nakagawa YS; Kaihara M; Nikaido M; Totani K
    Carbohydr Polym; 2013 Feb; 92(2):1573-8. PubMed ID: 23399191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine.
    Hao YC; Zong MH; Wang ZL; Li N
    Bioresour Bioprocess; 2021 Aug; 8(1):80. PubMed ID: 38650256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple one-pot dehydration process to convert N-acetyl-D-glucosamine into a nitrogen-containing compound, 3-acetamido-5-acetylfuran.
    Omari KW; Dodot L; Kerton FM
    ChemSusChem; 2012 Sep; 5(9):1767-72. PubMed ID: 22887942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the Potential of Bio-Based Nitrogen-Rich Furanic Platforms as Biomass Synthons.
    Gomes RFA; Gonçalves BMF; Andrade KHS; Sousa BB; Maulide N; Bernardes GJL; Afonso CAM
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202304449. PubMed ID: 37142557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Depolymerization of Chitin with Retention of N-Acetyl Group.
    Yabushita M; Kobayashi H; Kuroki K; Ito S; Fukuoka A
    ChemSusChem; 2015 Nov; 8(22):3760-3. PubMed ID: 26538108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituted anilides from chitin-based 3-acetamido-furfural.
    van der Loo CHM; Kaniraj JP; Wang T; Broekman JOP; Borst MLG; Pouwer K; Heeres A; Deuss PJ; Minnaard AJ
    Org Biomol Chem; 2023 Oct; 21(41):8372-8378. PubMed ID: 37818603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystalline reduction, surface area enlargement and pore generation of chitin by instant catapult steam explosion.
    Tian Z; Wang S; Hu X; Zhang Z; Liang L
    Carbohydr Polym; 2018 Nov; 200():255-261. PubMed ID: 30177165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of dissolution property of poorly water-soluble drug by novel dry coating method using planetary ball mill.
    Sonoda R; Horibe M; Oshima T; Iwasaki T; Watano S
    Chem Pharm Bull (Tokyo); 2008 Sep; 56(9):1243-7. PubMed ID: 18758094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ball milling-based one-step transformation of chitin biomass to organo-dispersible strong nanofibers passing highly time and energy consuming processes.
    Tran TH; Nguyen HL; Hao LT; Kong H; Park JM; Jung SH; Cha HG; Lee JY; Kim H; Hwang SY; Park J; Oh DX
    Int J Biol Macromol; 2019 Mar; 125():660-667. PubMed ID: 30550825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution of mechanically milled chitin in high temperature water.
    Aida TM; Oshima K; Abe C; Maruta R; Iguchi M; Watanabe M; Smith RL
    Carbohydr Polym; 2014 Jun; 106():172-8. PubMed ID: 24721066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion.
    Tan TS; Chin HY; Tsai ML; Liu CL
    Carbohydr Polym; 2015 May; 122():321-8. PubMed ID: 25817675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii.
    Villa-Lerma G; González-Márquez H; Gimeno M; López-Luna A; Bárzana E; Shirai K
    Bioresour Technol; 2013 Oct; 146():794-798. PubMed ID: 23993287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable Mechanochemistry: Protocols for Reproducible Outcomes of Neat and Liquid Assisted Ball-mill Grinding Experiments.
    Belenguer AM; Lampronti GI; Sanders JKM
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study.
    Uto T; Idenoue S; Yamamoto K; Kadokawa JI
    Phys Chem Chem Phys; 2018 Aug; 20(31):20669-20677. PubMed ID: 30059116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.