These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31973686)

  • 1. Investigating the effect of bouncing type on the physiological demands of trampolining.
    Clement T; Alexander K; Draper N
    Eur J Sport Sci; 2021 Jan; 21(1):1-6. PubMed ID: 31973686
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiological Demands of Trampolining at Different Intensities.
    Draper N; Clement T; Alexander K
    Res Q Exerc Sport; 2020 Mar; 91(1):136-141. PubMed ID: 31617827
    [No Abstract]   [Full Text] [Related]  

  • 3. Developing a mathematical model to predict energy expenditure while bouncing on a trampoline.
    Alexander K; Clement T; Draper N
    Eur J Sport Sci; 2021 Feb; 21(2):141-148. PubMed ID: 32036776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure, cardiorespiratory, and perceptual responses to shallow-water aquatic exercise in young adult women.
    Nagle EF; Sanders ME; Shafer A; Barone Gibbs B; Nagle JA; Deldin AR; Franklin BA; Robertson RJ
    Phys Sportsmed; 2013 Sep; 41(3):67-76. PubMed ID: 24113704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen uptake, heart rate and energy expenditure during slideboard routines at different cadence.
    Pinto GS; Abrantes C; Brito JP; Novaes JS; Monteiro MD; Reis VM
    J Sports Med Phys Fitness; 2010 Jun; 50(2):126-31. PubMed ID: 20585290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for measuring energy expenditure of a single sit-to-stand movement.
    Hatamoto Y; Yamada Y; Higaki Y; Tanaka H
    Eur J Appl Physiol; 2016 May; 116(5):997-1004. PubMed ID: 27017496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy expenditure estimates of the Caltrac accelerometer for running, race walking, and stepping.
    Swan PD; Byrnes WC; Haymes EM
    Br J Sports Med; 1997 Sep; 31(3):235-9. PubMed ID: 9298560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Components and variations in daily energy expenditure of athletic and non-athletic adolescents in free-living conditions.
    Ribeyre J; Fellmann N; Vernet J; Delaître M; Chamoux A; Coudert J; Vermorel M
    Br J Nutr; 2000 Oct; 84(4):531-9. PubMed ID: 11103224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure and cardiovascular responses to Tai Chi Easy.
    Smith LL; Wherry SJ; Larkey LK; Ainsworth BE; Swan PD
    Complement Ther Med; 2015 Dec; 23(6):802-5. PubMed ID: 26645519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel energy expenditure prediction equation for intermittent physical activity.
    Dugas LR; van der Merwe L; Odendaal H; Noakes TD; Lambert EV
    Med Sci Sports Exerc; 2005 Dec; 37(12):2154-61. PubMed ID: 16331144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure and EPOC between water-based high-intensity interval training and moderate-intensity continuous training sessions in healthy women.
    Schaun GZ; Pinto SS; Praia ABC; Alberton CL
    J Sports Sci; 2018 Sep; 36(18):2053-2060. PubMed ID: 29400623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and psychophysiological responses to an exer-game training protocol.
    Bronner S; Pinsker R; Naik R; Noah JA
    J Sci Med Sport; 2016 Mar; 19(3):267-271. PubMed ID: 25824058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of energy expenditure from heart rate measurements in cattle maintained under different conditions.
    Brosh A; Aharoni Y; Degen AA; Wright D; Young B
    J Anim Sci; 1998 Dec; 76(12):3054-64. PubMed ID: 9928610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise Intensity and Substrate Utilization in Healthy Sedentary Females Using the Life-Build-Line Device.
    Panyaek N; Sirivong D; Konharn K; Tunkamnerdthai O; Aneknun P; Leelayuwat N
    J Med Assoc Thai; 2017 Mar; 100(3):318-25. PubMed ID: 29911792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting energy expenditure from accelerometry counts in adolescent girls.
    Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R
    Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting energy expenditure through hand rim propulsion power output in individuals who use wheelchairs.
    Conger SA; Scott SN; Bassett DR
    Br J Sports Med; 2014 Jul; 48(13):1048-53. PubMed ID: 24825852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Bang® Keto Coffee Energy Drink on Metabolism and Exercise Performance in Resistance-Trained Adults: A Randomized, Double-blind, Placebo-controlled, Crossover Study.
    Harty PS; Stratton MT; Escalante G; Rodriguez C; Dellinger JR; Williams AD; White SJ; Smith RW; Johnson BA; Sanders MB; Tinsley GM
    J Int Soc Sports Nutr; 2020 Aug; 17(1):45. PubMed ID: 32831109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.