These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31973686)

  • 61. Excess post-exercise oxygen consumption following continuous and interval cycling exercise.
    McGarvey W; Jones R; Petersen S
    Int J Sport Nutr Exerc Metab; 2005 Feb; 15(1):28-37. PubMed ID: 15902987
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of Accelerometer Placement and/or Heart Rate on Energy Expenditure Prediction during Uphill Exercise.
    Kuo TBJ; Li JY; Chen CY; Lin YC; Tsai MW; Lin SP; Yang CCH
    J Mot Behav; 2018; 50(2):127-133. PubMed ID: 28850303
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An evaluation of energy expenditure estimation by three activity monitors.
    Ryan J; Gormley J
    Eur J Sport Sci; 2013; 13(6):681-8. PubMed ID: 24251746
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Physiological adaptations to head-out aquatic exercises with different levels of body immersion.
    Barbosa TM; Garrido MF; Bragada J
    J Strength Cond Res; 2007 Nov; 21(4):1255-9. PubMed ID: 18076241
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxygen consumption and energy expenditure of level versus downhill running.
    Robergs RA; Wagner DR; Skemp KM
    J Sports Med Phys Fitness; 1997 Sep; 37(3):168-74. PubMed ID: 9407746
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of exhaustive exercise on the choice of technique and physiological response in classical roller skiing.
    Ettema G; Øksnes M; Kveli E; Sandbakk Ø
    Eur J Appl Physiol; 2018 Nov; 118(11):2385-2392. PubMed ID: 30105640
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Free-living energy expenditure of adult men assessed by continuous heart-rate monitoring and doubly-labelled water.
    Davidson L; McNeill G; Haggarty P; Smith JS; Franklin MF
    Br J Nutr; 1997 Nov; 78(5):695-708. PubMed ID: 9389894
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The aging influence on cardiorespiratory, metabolic, and energy expenditure adaptations in head-out aquatic exercises: Differences between young and elderly women.
    Bartolomeu RF; Barbosa TM; Morais JE; Lopes VP; Bragada JA; Costa MJ
    Women Health; 2017 Mar; 57(3):377-391. PubMed ID: 26984506
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Physiological Demands of Flat Horse Racing Jockeys.
    Cullen S; OʼLoughlin G; McGoldrick A; Smyth B; May G; Warrington GD
    J Strength Cond Res; 2015 Nov; 29(11):3060-6. PubMed ID: 25932980
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modified sprint interval training protocols. Part I. Physiological responses.
    Islam H; Townsend LK; Hazell TJ
    Appl Physiol Nutr Metab; 2017 Apr; 42(4):339-346. PubMed ID: 28177740
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessing sleeping energy expenditure in children using heart-rate monitoring calibrated against open-circuit indirect calorimetry: a pilot study.
    Beghin L; Michaud L; Guimber D; Vaksmann G; Turck D; Gottrand F
    Br J Nutr; 2002 Nov; 88(5):533-43. PubMed ID: 12425734
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Energy Expenditure and Intensity of Group-Based High-Intensity Functional Training: A Brief Report.
    Willis EA; Szabo-Reed AN; Ptomey LT; Honas JJ; Steger FL; Washburn RA; Donnelly JE
    J Phys Act Health; 2019 Jun; 16(6):470-476. PubMed ID: 31104545
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Technical Note: The relationship between heart rate and energy expenditure in growing crossbred Boer and Spanish wethers.
    Puchala R; Tovar-Luna I; Sahlu T; Freetly HC; Goetsch AL
    J Anim Sci; 2009 May; 87(5):1714-21. PubMed ID: 19213708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of energy expenditure in men and women at rest and during exercise recovery.
    Berg KE
    J Sports Med Phys Fitness; 1991 Sep; 31(3):351-6. PubMed ID: 1798304
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alpine Skiing as Winter-Time High-Intensity Training.
    Stöggl TL; Schwarzl C; Müller EE; Nagasaki M; Stöggl J; Schönfelder M; Niebauer J
    Med Sci Sports Exerc; 2017 Sep; 49(9):1859-1867. PubMed ID: 28398944
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comparison of the physiological exercise intensity differences between shod and barefoot submaximal deep-water running at the same cadence.
    Killgore GL; Coste SC; O' Meara SE; Konnecke CJ
    J Strength Cond Res; 2010 Dec; 24(12):3302-12. PubMed ID: 21088547
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of Patrol Operation on Hydration Status and Autonomic Modulation of Heart Rate of Brazilian Peacekeepers in Haiti.
    Duarte AF; Morgado JJ
    J Strength Cond Res; 2015 Nov; 29 Suppl 11():S82-7. PubMed ID: 26506204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.