These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 31973819)
41. Coordinate expression and localization of iron and zinc transporters explain iron-zinc interactions during uptake in Caco-2 cells: implications for iron uptake at the enterocyte. Iyengar V; Pullakhandam R; Nair KM J Nutr Biochem; 2012 Sep; 23(9):1146-54. PubMed ID: 22137264 [TBL] [Abstract][Full Text] [Related]
42. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Brasse-Lagnel C; Karim Z; Letteron P; Bekri S; Bado A; Beaumont C Gastroenterology; 2011 Apr; 140(4):1261-1271.e1. PubMed ID: 21199652 [TBL] [Abstract][Full Text] [Related]
43. The PI3K/Akt inhibitor LY294002 reverses BCRP-mediated drug resistance without affecting BCRP translocation. Imai Y; Yoshimori M; Fukuda K; Yamagishi H; Ueda Y Oncol Rep; 2012 Jun; 27(6):1703-9. PubMed ID: 22426819 [TBL] [Abstract][Full Text] [Related]
44. Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: kinetic analyses and possible mechanism. Iyengar V; Pullakhandam R; Nair KM Indian J Biochem Biophys; 2009 Aug; 46(4):299-306. PubMed ID: 19788062 [TBL] [Abstract][Full Text] [Related]
45. Inhibition of intestinal dipeptide transport by the neuropeptide VIP is an anti-absorptive effect via the VPAC1 receptor in a human enterocyte-like cell line (Caco-2). Anderson CM; Mendoza ME; Kennedy DJ; Raldua D; Thwaites DT Br J Pharmacol; 2003 Feb; 138(4):564-73. PubMed ID: 12598410 [TBL] [Abstract][Full Text] [Related]
46. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells. Lee SM; Attieh ZK; Son HS; Chen H; Bacouri-Haidar M; Vulpe CD Biochem Biophys Res Commun; 2012 May; 421(3):449-55. PubMed ID: 22503983 [TBL] [Abstract][Full Text] [Related]
47. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. Tennant J; Stansfield M; Yamaji S; Srai SK; Sharp P FEBS Lett; 2002 Sep; 527(1-3):239-44. PubMed ID: 12220667 [TBL] [Abstract][Full Text] [Related]
48. IEC-6 cells are an appropriate model of intestinal iron absorption in rats. Thomas C; Oates PS J Nutr; 2002 Apr; 132(4):680-7. PubMed ID: 11925460 [TBL] [Abstract][Full Text] [Related]
49. Modulation of iron transport proteins in human colorectal carcinogenesis. Brookes MJ; Hughes S; Turner FE; Reynolds G; Sharma N; Ismail T; Berx G; McKie AT; Hotchin N; Anderson GJ; Iqbal T; Tselepis C Gut; 2006 Oct; 55(10):1449-60. PubMed ID: 16641131 [TBL] [Abstract][Full Text] [Related]
50. Calcium and iron absorption--mechanisms and public health relevance. Lönnerdal B Int J Vitam Nutr Res; 2010 Oct; 80(4-5):293-9. PubMed ID: 21462112 [TBL] [Abstract][Full Text] [Related]
51. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Xu E; Chen M; Zheng J; Maimaitiming Z; Zhong T; Chen H Biochem Biophys Res Commun; 2018 Sep; 503(3):1905-1910. PubMed ID: 30060949 [TBL] [Abstract][Full Text] [Related]
52. Kinetics of iron absorption by in situ ligated small intestinal loops of broilers involved in iron transporters. Zhang LY; Liao XD; Zhang LY; Lu L; Luo XG J Anim Sci; 2016 Dec; 94(12):5219-5229. PubMed ID: 28046154 [TBL] [Abstract][Full Text] [Related]
53. Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Yamaguchi K; Lee SH; Kim JS; Wimalasena J; Kitajima S; Baek SJ Cancer Res; 2006 Feb; 66(4):2376-84. PubMed ID: 16489044 [TBL] [Abstract][Full Text] [Related]
54. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. Fujishiro H; Hamao S; Tanaka R; Kambe T; Himeno S J Toxicol Sci; 2017; 42(5):559-567. PubMed ID: 28904291 [TBL] [Abstract][Full Text] [Related]
55. [Effect of zinc on mRNA expression of ZIP4 in Caco2 cells]. Shen H; Qin HH; Long JG; Wang FD Wei Sheng Yan Jiu; 2006 Jul; 35(4):426-7. PubMed ID: 16986515 [TBL] [Abstract][Full Text] [Related]
56. Hepcidin inhibits apical iron uptake in intestinal cells. Mena NP; Esparza A; Tapia V; Valdés P; Núñez MT Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361 [TBL] [Abstract][Full Text] [Related]
57. Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal Caco-2 cells. Shen H; Qin H; Guo J Nutr Res; 2008 Jun; 28(6):406-13. PubMed ID: 19083439 [TBL] [Abstract][Full Text] [Related]
58. Regulation of transepithelial transport of iron by hepcidin. Mena NP; Esparza AL; Núñez MT Biol Res; 2006; 39(1):191-3. PubMed ID: 16629180 [TBL] [Abstract][Full Text] [Related]
59. Iron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells. Esparza A; Gerdtzen ZP; Olivera-Nappa A; Salgado JC; Núñez MT Am J Physiol Cell Physiol; 2015 Oct; 309(8):C558-67. PubMed ID: 26289753 [TBL] [Abstract][Full Text] [Related]
60. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis. Cegarra L; Aguirre P; Nuñez MT; Gerdtzen ZP; Salgado JC Am J Physiol Cell Physiol; 2022 Dec; 323(6):C1791-C1806. PubMed ID: 36342159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]