These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31973865)
1. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Sun L; Yin J; Du H; Liu P; Cao C Pestic Biochem Physiol; 2020 Feb; 163():254-262. PubMed ID: 31973865 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus. Sun L; Liu P; Sun S; Yan S; Cao C Pest Manag Sci; 2019 Apr; 75(4):1024-1033. PubMed ID: 30230189 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis and response of three important detoxifying enzymes to Serratia marcescens Bizio (SM1) in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae). Feng K; Luo J; Ding X; Tang F Pestic Biochem Physiol; 2021 Oct; 178():104922. PubMed ID: 34446198 [TBL] [Abstract][Full Text] [Related]
4. Genomic analysis of two Chinese isolates of hyphantria cunea nucleopolyhedrovirus reveals a novel species of alphabaculovirus that infects hyphantria cunea drury (lepidoptera: arctiidae). Peng X; Zhang W; Lei C; Min S; Hu J; Wang Q; Sun X BMC Genomics; 2022 May; 23(1):367. PubMed ID: 35562654 [TBL] [Abstract][Full Text] [Related]
5. Hemolin increases the immune response of a caterpillar to NPV infection. Yan L; Nur Faidah A; Sun L; Cao C J Insect Physiol; 2024 Jun; 155():104651. PubMed ID: 38763360 [TBL] [Abstract][Full Text] [Related]
6. The transcriptomic response of Zhang L; Tang X; Wang Z; Tang F Front Cell Infect Microbiol; 2023; 13():1093432. PubMed ID: 36896191 [No Abstract] [Full Text] [Related]
7. Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae). Yuan Y; Li L; Zhao J; Chen M J Insect Sci; 2020 Jan; 20(1):. PubMed ID: 32061083 [TBL] [Abstract][Full Text] [Related]
8. Effects of midgut bacteria in Hyphantria cunea (Lepidoptera: Erebidae) on nuclear polyhedrosis virus and Bacillus thuringiensis (Bacillales: Bacillaceae). Chen H; Hao D; Chen C; Sun Y; Yu X J Insect Sci; 2023 Mar; 23(2):. PubMed ID: 36916277 [TBL] [Abstract][Full Text] [Related]
9. Effects of 4-hexylresorcinol on the phenoloxidase from Hyphantria cunea (Lepidoptera: Arctiidae): In vivo and in vitro studies. Sharifi M; Ghadamyari M; Sajedi RH; Mahmoodi NO Insect Sci; 2015 Oct; 22(5):639-50. PubMed ID: 24995395 [TBL] [Abstract][Full Text] [Related]
10. Activation of the Host Immune Response in Wang Z; Feng K; Tang F; Xu M Insects; 2021 Oct; 12(11):. PubMed ID: 34821784 [TBL] [Abstract][Full Text] [Related]
11. Differentially Expressed Proteins From the Peritrophic Membrane Related to the Lethal, Synergistic Mechanisms Observed in Hyphantria cunea Larvae Treated With a Mixture of Bt and Chlorbenzuron. Xu M; Xu F; Wu X J Insect Sci; 2017 Jan; 17(2):. PubMed ID: 28931154 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome sequencing for identification of diapause-associated genes in fall webworm, Hyphantria cunea Drury. Deng Y; Li F; Rieske LK; Sun LL; Sun SH Gene; 2018 Aug; 668():229-236. PubMed ID: 29758298 [TBL] [Abstract][Full Text] [Related]
13. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. Zhang X; Fan Z; Zhang R; Kong X; Liu F; Fang J; Zhang S; Zhang Z Pest Manag Sci; 2023 Apr; 79(4):1566-1577. PubMed ID: 36527705 [TBL] [Abstract][Full Text] [Related]
14. [Analysis and expression of Hyphantria cunea nuclear polyhedrosis virus sod gene]. Cao G; Xue R; Zhu Y; Wei Y; Gong C Wei Sheng Wu Xue Bao; 2001 Apr; 41(2):173-80. PubMed ID: 12549022 [TBL] [Abstract][Full Text] [Related]
15. The susceptibility of Hyphantria cunea larvae to microbial pesticides Bacillus thuringiensis and Mamestra brassicae nuclear polyhedrosis virus under Cd stress. Xu J; Zheng L; Tan M; Wu H; Yan S; Jiang D Pestic Biochem Physiol; 2023 Apr; 191():105383. PubMed ID: 36963948 [TBL] [Abstract][Full Text] [Related]
16. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. Chen Q; Zhao H; Wen M; Li J; Zhou H; Wang J; Zhou Y; Liu Y; Du L; Kang H; Zhang J; Cao R; Xu X; Zhou JJ; Ren B; Wang Y BMC Genomics; 2020 Mar; 21(1):242. PubMed ID: 32183717 [TBL] [Abstract][Full Text] [Related]
17. Expression and characterization of a sigma-class glutathione S-transferase of the fall webworm, Hyphantria cunea. Yamamoto K; Fujii H; Aso Y; Banno Y; Koga K Biosci Biotechnol Biochem; 2007 Feb; 71(2):553-60. PubMed ID: 17284839 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of key genes in insulin signaling pathway as molecular targets for controlling the fall webworm, Hyphantria cunea. Yan L; Du H; Li Y; Li X; Sun L; Cao C Pest Manag Sci; 2023 Feb; 79(2):899-908. PubMed ID: 36317953 [TBL] [Abstract][Full Text] [Related]
19. 3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury. Qiu Q; Zou H; Zou H; Jing T; Li X; Yan G; Geng N; Zhang B; Zhang Z; Zhang S; Yao B; Zhang G; Zou C Pestic Biochem Physiol; 2021 Nov; 179():104961. PubMed ID: 34802511 [TBL] [Abstract][Full Text] [Related]
20. FDP-Na-induced enhancement of glycolysis impacts larval growth and development and chitin biosynthesis in fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Zhang S; Zhang Y; Zou H; Li X; Zou H; Wang Z; Zou C Pestic Biochem Physiol; 2023 Sep; 195():105560. PubMed ID: 37666596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]