These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3197394)

  • 21. Water balance and its relation to fermentation acid production in the intestinal parasites Hymenolepis diminuta (Cestoda) and Moniliformis moniliformis (Acanthocephala).
    Uglem GL
    J Parasitol; 1991 Dec; 77(6):874-83. PubMed ID: 1779290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sitosterol reduces messenger RNA and protein expression levels of Niemann-Pick C1-like 1 in FHs 74 Int cells.
    Jesch ED; Seo JM; Carr TP; Lee JY
    Nutr Res; 2009 Dec; 29(12):859-66. PubMed ID: 19963159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of cholesterol and beta-sitosterol: effects on jejunal fluid secretion induced by oleate, and absorption from mixed micellar solutions.
    Slota T; Kozlov NA; Ammon HV
    Gut; 1983 Jul; 24(7):653-8. PubMed ID: 6862286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Side-chain structure is critical for the transport of sterols from lysosomes to cytoplasm.
    Sato Y; Nishikawa K; Aikawa K; Mimura K; Murakami-Murofushi K; Arai H; Inoue K
    Biochim Biophys Acta; 1995 Jun; 1257(1):38-46. PubMed ID: 7599179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of tunicamycin on the uptake and incorporation of galactose in Hymenolepis diminuta.
    Hildreth MB; Pappas PW; Oaks JA
    J Parasitol; 1997 Aug; 83(4):555-8. PubMed ID: 9267392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allosteric control of pyrimidine transport in Hymenolepis diminuta: an unusual kinetic isotope effect.
    Uglem GL; Dupre RK; Harley JP
    Parasitology; 1983 Oct; 87 (Pt 2)():289-93. PubMed ID: 6646810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hymenolepis diminuta and Hymenolepis microstoma: effect of ouabain on active nonelectrolyte uptake across the "epithelial" syncytium.
    Podesta RB; Evans WS; Stallard HE
    Exp Parasitol; 1977 Oct; 43(1):25-38. PubMed ID: 891710
    [No Abstract]   [Full Text] [Related]  

  • 28. Independent characterization of thymidine transport and subsequent metabolism in Hymenolepis diminuta--I. Comparison of short- and long-term transport kinetics.
    Insler GD
    Comp Biochem Physiol B; 1989; 94(2):233-6. PubMed ID: 2591190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloride-sensitive glucose transport in Hymenolepis diminuta.
    Pappas PW; Hansen BD
    J Parasitol; 1977 Oct; 63(5):800-4. PubMed ID: 915608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization and metabolism of dietary sterols in the honey bee and the yellow fever mosquito.
    Svoboda JA; Thompson MJ; Herbert EW; Shortino TJ; Szczepanik-Vanleeuwen PA
    Lipids; 1982 Mar; 17(3):220-5. PubMed ID: 7087696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats.
    Hamada T; Goto H; Yamahira T; Sugawara T; Imaizumi K; Ikeda I
    Lipids; 2006 Jun; 41(6):551-6. PubMed ID: 16981433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake of 7-dehydro derivatives of cholesterol, campesterol, and beta-sitosterol by rat erythrocytes, jejunal villus cells, and brush border membranes.
    Child P; Kuksis A
    J Lipid Res; 1983 May; 24(5):552-65. PubMed ID: 6875380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of phytosterols and phytostanols on the solubilization of cholesterol by dietary mixed micelles: an in vitro study.
    Mel'nikov SM; Seijen ten Hoorn JW; Eijkelenboom AP
    Chem Phys Lipids; 2004 Feb; 127(2):121-41. PubMed ID: 14725996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of thermodynamic parameters for solubilization of plant sterol and stanol in bile salt micelles.
    Matsuoka K; Nakazawa T; Nakamura A; Honda C; Endo K; Tsukada M
    Chem Phys Lipids; 2008 Aug; 154(2):87-93. PubMed ID: 18544343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid metabolism in the rat tapeworm, Hymenolepis diminuta.
    Wack M; Komuniecki R; Roberts LS
    Comp Biochem Physiol B; 1983; 74(3):399-402. PubMed ID: 6404592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia.
    Salen G; Tint GS; Shefer S; Shore V; Nguyen L
    Arterioscler Thromb; 1992 May; 12(5):563-8. PubMed ID: 1576118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phloretin inhibition of glucose transport by the tapeworm Hymenolepis diminuta: a kinetic analysis.
    Murphy WA; Lumsden RD
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):749-54. PubMed ID: 6149047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hymenolepis diminuta (Cestoda): uptake of cycloleucine by metacestodes.
    Jeffs SA; Arme C
    Comp Biochem Physiol A Comp Physiol; 1985; 81(3):495-9. PubMed ID: 2863036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a sodium ion exchange carrier linked with glucose transport across the brush border of a flatworm (Hymenolepis diminuta, Cestoda).
    Uglem GL
    Biochim Biophys Acta; 1976 Aug; 443(1):126-36. PubMed ID: 953010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of glucose in the lipid metabolism of the rat tapeworm Hymenolepis diminuta.
    Webb RA; Mettrick DF
    Int J Parasitol; 1975 Feb; 5(1):107-12. PubMed ID: 1112624
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.