These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Texture analysis on conventional MRI images accurately predicts early malignant transformation of low-grade gliomas. Zhang S; Chiang GC; Magge RS; Fine HA; Ramakrishna R; Chang EW; Pulisetty T; Wang Y; Zhu W; Kovanlikaya I Eur Radiol; 2019 Jun; 29(6):2751-2759. PubMed ID: 30617484 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430 [TBL] [Abstract][Full Text] [Related]
6. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
7. MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma. Zhang S; Chiang GC; Magge RS; Fine HA; Ramakrishna R; Chang EW; Pulisetty T; Wang Y; Zhu W; Kovanlikaya I Magn Reson Imaging; 2019 Apr; 57():254-258. PubMed ID: 30465868 [TBL] [Abstract][Full Text] [Related]
8. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related]
9. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
10. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. Xie T; Chen X; Fang J; Kang H; Xue W; Tong H; Cao P; Wang S; Yang Y; Zhang W J Magn Reson Imaging; 2018 Apr; 47(4):1099-1111. PubMed ID: 28845594 [TBL] [Abstract][Full Text] [Related]
11. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514 [TBL] [Abstract][Full Text] [Related]
12. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122 [TBL] [Abstract][Full Text] [Related]
13. Data-driven grading of brain gliomas: a multiparametric MR imaging study. Caulo M; Panara V; Tortora D; Mattei PA; Briganti C; Pravatà E; Salice S; Cotroneo AR; Tartaro A Radiology; 2014 Aug; 272(2):494-503. PubMed ID: 24661247 [TBL] [Abstract][Full Text] [Related]
14. [High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas]. Yin HL; Li DB; Jiang Y; Li SH; Chen Y; Lin GW Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):841-846. PubMed ID: 30481936 [No Abstract] [Full Text] [Related]
15. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach. Falk A; Fahlström M; Rostrup E; Berntsson S; Zetterling M; Morell A; Larsson HB; Smits A; Larsson EM Neuroradiology; 2014 Dec; 56(12):1031-8. PubMed ID: 25204450 [TBL] [Abstract][Full Text] [Related]
16. Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign. Lee MK; Park JE; Jo Y; Park SY; Kim SJ; Kim HS Eur Radiol; 2020 Feb; 30(2):844-854. PubMed ID: 31446467 [TBL] [Abstract][Full Text] [Related]
17. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading. Su CQ; Lu SS; Han QY; Zhou MD; Hong XN Acta Radiol; 2019 Jun; 60(6):777-787. PubMed ID: 30244590 [TBL] [Abstract][Full Text] [Related]
18. Machine learning predicts histologic type and grade of canine gliomas based on MRI texture analysis. Barge P; Oevermann A; Maiolini A; Durand A Vet Radiol Ultrasound; 2023 Jul; 64(4):724-732. PubMed ID: 37133981 [TBL] [Abstract][Full Text] [Related]
19. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Li-Chun Hsieh K; Chen CY; Lo CM Comput Biol Med; 2017 Apr; 83():102-108. PubMed ID: 28254615 [TBL] [Abstract][Full Text] [Related]
20. A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI. Yin P; Mao N; Zhao C; Wu J; Chen L; Hong N J Magn Reson Imaging; 2019 Mar; 49(3):752-759. PubMed ID: 30430686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]