BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 31974048)

  • 1. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production.
    Aketo T; Hoshikawa Y; Nojima D; Yabu Y; Maeda Y; Yoshino T; Takano H; Tanaka T
    J Biosci Bioeng; 2020 May; 129(5):565-572. PubMed ID: 31974048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater.
    Luo L; He H; Yang C; Wen S; Zeng G; Wu M; Zhou Z; Lou W
    Bioresour Technol; 2016 Sep; 216():135-41. PubMed ID: 27236400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production.
    Jebali A; Acién FG; Gómez C; Fernández-Sevilla JM; Mhiri N; Karray F; Dhouib A; Molina-Grima E; Sayadi S
    Bioresour Technol; 2015 Dec; 198():424-30. PubMed ID: 26409854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach for phycoremediation of different wastewaters and biodiesel production using microalgae.
    Amit ; Ghosh UK
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18673-18681. PubMed ID: 29705901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.
    Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS
    Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mine wastewater on nutrient removal and lipid production by a green microalga Micratinium reisseri from concentrated municipal wastewater.
    Ji MK; Kabra AN; Salama el-S; Roh HS; Kim JR; Lee DS; Jeon BH
    Bioresour Technol; 2014 Apr; 157():84-90. PubMed ID: 24534788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgal post-treatment of anaerobically digested agro-industrial wastes for nutrient removal and lipids production.
    Koutra E; Grammatikopoulos G; Kornaros M
    Bioresour Technol; 2017 Jan; 224():473-480. PubMed ID: 27866801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phycoremediation of municipal wastewater by microalgae to produce biofuel.
    Singh AK; Sharma N; Farooqi H; Abdin MZ; Mock T; Kumar S
    Int J Phytoremediation; 2017 Sep; 19(9):805-812. PubMed ID: 28156133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO
    Mousavi S; Najafpour GD; Mohammadi M; Seifi MH
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):519-530. PubMed ID: 29299676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.
    Samorì G; Samorì C; Guerrini F; Pistocchi R
    Water Res; 2013 Feb; 47(2):791-801. PubMed ID: 23211134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production.
    Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT
    Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production.
    Qin L; Wang Z; Sun Y; Shu Q; Feng P; Zhu L; Xu J; Yuan Z
    Environ Sci Pollut Res Int; 2016 May; 23(9):8379-87. PubMed ID: 26780059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation.
    Osundeko O; Pittman JK
    Bioresour Technol; 2014; 152():355-63. PubMed ID: 24315940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle.
    Praveen P; Loh KC
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3571-3580. PubMed ID: 30809712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production.
    Chokshi K; Pancha I; Ghosh A; Mishra S
    Bioresour Technol; 2016 Dec; 221():455-460. PubMed ID: 27668878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Mousavi S; Najafpour GD; Mohammadi M
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30139-30150. PubMed ID: 30151786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.
    Yao L; Shi J; Miao X
    PLoS One; 2015; 10(9):e0139117. PubMed ID: 26418261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10.
    Zhao P; Yu X; Li J; Tang X; Huang Z
    J Biosci Bioeng; 2014 Jul; 118(1):72-7. PubMed ID: 24491914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Selection of Microalgae for Biofuel Using Municipal Wastewater as a Resource].
    Han SF; Jin WB; Tu RJ; Chen HY
    Huan Jing Ke Xue; 2017 Aug; 38(8):3347-3353. PubMed ID: 29964943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.