These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31974317)
1. Spherical microwell arrays for studying single cells and microtissues in 3D confinement. Huang CK; Paylaga GJ; Bupphathong S; Lin KH Biofabrication; 2020 Feb; 12(2):025016. PubMed ID: 31974317 [TBL] [Abstract][Full Text] [Related]
2. Networked concave microwell arrays for constructing 3D cell spheroids. Lee GH; Lee JS; Lee GH; Joung WY; Kim SH; Lee SH; Park JY; Kim DH Biofabrication; 2017 Nov; 10(1):015001. PubMed ID: 29190216 [TBL] [Abstract][Full Text] [Related]
3. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218 [TBL] [Abstract][Full Text] [Related]
4. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening. Yang W; Yu H; Li G; Wei F; Wang Y; Liu L Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk. Kim K; Kim SH; Lee GH; Park JY Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487 [TBL] [Abstract][Full Text] [Related]
6. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Shin HS; Kook YM; Hong HJ; Kim YM; Koh WG; Lim JY Acta Biomater; 2016 Nov; 45():121-132. PubMed ID: 27592814 [TBL] [Abstract][Full Text] [Related]
7. Controlling major cellular processes of human mesenchymal stem cells using microwell structures. Xu X; Wang W; Kratz K; Fang L; Li Z; Kurtz A; Ma N; Lendlein A Adv Healthc Mater; 2014 Dec; 3(12):1991-2003. PubMed ID: 25313500 [TBL] [Abstract][Full Text] [Related]
8. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017 [TBL] [Abstract][Full Text] [Related]
9. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss. Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681 [TBL] [Abstract][Full Text] [Related]
10. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. Nakazawa K; Yoshiura Y; Koga H; Sakai Y J Biosci Bioeng; 2013 Nov; 116(5):628-33. PubMed ID: 23735328 [TBL] [Abstract][Full Text] [Related]
11. Micro-well arrays for 3D shape control and high resolution analysis of single cells. Ochsner M; Dusseiller MR; Grandin HM; Luna-Morris S; Textor M; Vogel V; Smith ML Lab Chip; 2007 Aug; 7(8):1074-7. PubMed ID: 17653351 [TBL] [Abstract][Full Text] [Related]
12. A microwell pattern for C17.2 cell aggregate formation with concave cylindrical surface induced cell peeling. Zhang LG; Zhong DH; Zhang Y; Li CZ; Kisaalita WS; Wu ZZ Biomaterials; 2014 Nov; 35(35):9423-37. PubMed ID: 25132604 [TBL] [Abstract][Full Text] [Related]
13. Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells. Giobbe GG; Zagallo M; Riello M; Serena E; Masi G; Barzon L; Di Camillo B; Elvassore N Biotechnol Bioeng; 2012 Dec; 109(12):3119-32. PubMed ID: 22674472 [TBL] [Abstract][Full Text] [Related]
14. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. Ozawa F; Ino K; Arai T; Ramón-Azcón J; Takahashi Y; Shiku H; Matsue T Lab Chip; 2013 Aug; 13(15):3128-35. PubMed ID: 23764965 [TBL] [Abstract][Full Text] [Related]
15. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. Ochsner M; Textor M; Vogel V; Smith ML PLoS One; 2010 Mar; 5(3):e9445. PubMed ID: 20351781 [TBL] [Abstract][Full Text] [Related]
16. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. You J; Shin DS; Patel D; Gao Y; Revzin A Adv Healthc Mater; 2014 Jan; 3(1):126-32. PubMed ID: 23828859 [TBL] [Abstract][Full Text] [Related]
17. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999 [TBL] [Abstract][Full Text] [Related]
18. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731 [TBL] [Abstract][Full Text] [Related]
19. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids. Liu T; Chien CC; Parkinson L; Thierry B ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458 [TBL] [Abstract][Full Text] [Related]
20. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments. Greiner AM; Klein F; Gudzenko T; Richter B; Striebel T; Wundari BG; Autenrieth TJ; Wegener M; Franz CM; Bastmeyer M Biomaterials; 2015 Nov; 69():121-32. PubMed ID: 26283159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]