These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31974419)
1. Classification and Morphological Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks. Park J; Kim DI; Choi B; Kang W; Kwon HW Sci Rep; 2020 Jan; 10(1):1012. PubMed ID: 31974419 [TBL] [Abstract][Full Text] [Related]
2. Application of convolutional neural networks for classification of adult mosquitoes in the field. Motta D; Santos AÁB; Winkler I; Machado BAS; Pereira DADI; Cavalcanti AM; Fonseca EOL; Kirchner F; Badaró R PLoS One; 2019; 14(1):e0210829. PubMed ID: 30640961 [TBL] [Abstract][Full Text] [Related]
3. Implementation of a deep learning model for automated classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in real time. Ong SQ; Ahmad H; Nair G; Isawasan P; Majid AHA Sci Rep; 2021 May; 11(1):9908. PubMed ID: 33972645 [TBL] [Abstract][Full Text] [Related]
4. Robust mosquito species identification from diverse body and wing images using deep learning. Nolte K; Sauer FG; Baumbach J; Kollmannsberger P; Lins C; Lühken R Parasit Vectors; 2024 Sep; 17(1):372. PubMed ID: 39223629 [TBL] [Abstract][Full Text] [Related]
5. A novel optical sensor system for the automatic classification of mosquitoes by genus and sex with high levels of accuracy. González-Pérez MI; Faulhaber B; Williams M; Brosa J; Aranda C; Pujol N; Verdún M; Villalonga P; Encarnação J; Busquets N; Talavera S Parasit Vectors; 2022 Jun; 15(1):190. PubMed ID: 35668486 [TBL] [Abstract][Full Text] [Related]
6. Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes. Motta D; Santos AÁB; Machado BAS; Ribeiro-Filho OGV; Camargo LOA; Valdenegro-Toro MA; Kirchner F; Badaró R PLoS One; 2020; 15(7):e0234959. PubMed ID: 32663230 [TBL] [Abstract][Full Text] [Related]
7. Delimiting cryptic morphological variation among human malaria vector species using convolutional neural networks. Couret J; Moreira DC; Bernier D; Loberti AM; Dotson EM; Alvarez M PLoS Negl Trop Dis; 2020 Dec; 14(12):e0008904. PubMed ID: 33332415 [TBL] [Abstract][Full Text] [Related]
8. Application of computer vision and deep learning models to automatically classify medically important mosquitoes in North Borneo, Malaysia. Ong SQ; Ab Majid AH; Li WJ; Wang JG Bull Entomol Res; 2024 Apr; 114(2):302-307. PubMed ID: 38557482 [TBL] [Abstract][Full Text] [Related]
10. Field evaluation of an automated mosquito surveillance system which classifies Aedes and Culex mosquitoes by genus and sex. González-Pérez MI; Faulhaber B; Aranda C; Williams M; Villalonga P; Silva M; Costa Osório H; Encarnaçao J; Talavera S; Busquets N Parasit Vectors; 2024 Mar; 17(1):97. PubMed ID: 38424626 [TBL] [Abstract][Full Text] [Related]
11. DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka. Weeraratne TC; Surendran SN; Parakrama Karunaratne SHP Parasit Vectors; 2018 Apr; 11(1):266. PubMed ID: 29695263 [TBL] [Abstract][Full Text] [Related]
12. A ResNet attention model for classifying mosquitoes from wing-beating sounds. Wei X; Hossain MZ; Ahmed KA Sci Rep; 2022 Jun; 12(1):10334. PubMed ID: 35725886 [TBL] [Abstract][Full Text] [Related]
13. An annotated dataset of bioacoustic sensing and features of mosquitoes. Vasconcelos D; Nunes NJ; Gomes J Sci Data; 2020 Nov; 7(1):382. PubMed ID: 33177516 [TBL] [Abstract][Full Text] [Related]
14. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Li Y; Su X; Zhou G; Zhang H; Puthiyakunnon S; Shuai S; Cai S; Gu J; Zhou X; Yan G; Chen XG Parasit Vectors; 2016 Aug; 9(1):446. PubMed ID: 27519419 [TBL] [Abstract][Full Text] [Related]
15. AI-driven convolutional neural networks for accurate identification of yellow fever vectors. de Araújo TO; de Miranda VL; Gurgel-Gonçalves R Parasit Vectors; 2024 Aug; 17(1):329. PubMed ID: 39095920 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Brown R; Hing CT; Fornace K; Ferguson HM Parasit Vectors; 2018 Jun; 11(1):346. PubMed ID: 29898780 [TBL] [Abstract][Full Text] [Related]
17. Geometric morphometric wing analysis as a tool to discriminate female mosquitoes from different suburban areas of Chiang Mai province, Thailand. Champakaew D; Junkum A; Sontigun N; Sanit S; Limsopatham K; Saeung A; Somboon P; Pitasawat B PLoS One; 2021; 16(11):e0260333. PubMed ID: 34843516 [TBL] [Abstract][Full Text] [Related]
19. Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features. Zhang J; Xia Y; Xie Y; Fulham M; Feng DD IEEE J Biomed Health Inform; 2018 Sep; 22(5):1521-1530. PubMed ID: 29990115 [TBL] [Abstract][Full Text] [Related]
20. The first detected airline introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International airport, the Netherlands. Ibañez-Justicia A; Gloria-Soria A; den Hartog W; Dik M; Jacobs F; Stroo A Parasit Vectors; 2017 Dec; 10(1):603. PubMed ID: 29221490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]