These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31974487)

  • 1. Semantic Segmentation of the Choroid in Swept Source Optical Coherence Tomography Images for Volumetrics.
    Tsuji S; Sekiryu T; Sugano Y; Ojima A; Kasai A; Okamoto M; Eifuku S
    Sci Rep; 2020 Jan; 10(1):1088. PubMed ID: 31974487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation.
    Philip AM; Gerendas BS; Zhang L; Faatz H; Podkowinski D; Bogunovic H; Abramoff MD; Hagmann M; Leitner R; Simader C; Sonka M; Waldstein SM; Schmidt-Erfurth U
    Br J Ophthalmol; 2016 Oct; 100(10):1372-6. PubMed ID: 26769670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic choroidal segmentation in OCT images using supervised deep learning methods.
    Kugelman J; Alonso-Caneiro D; Read SA; Hamwood J; Vincent SJ; Chen FK; Collins MJ
    Sci Rep; 2019 Sep; 9(1):13298. PubMed ID: 31527630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional choroidal vessel network quantification using swept source optical coherence tomography.
    Tan B; Wong DWK; Yow AP; Yao X; Schmetterer L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1883-1886. PubMed ID: 33018368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms.
    Zhou H; Dai Y; Shi Y; Russell JF; Lyu C; Noorikolouri J; Feuer WJ; Chu Z; Zhang Q; de Sisternes L; Durbin MK; Gregori G; Rosenfeld PJ; Wang RK
    Ophthalmol Retina; 2020 Feb; 4(2):204-215. PubMed ID: 32033714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images.
    Chen Q; Niu S; Fang W; Shuai Y; Fan W; Yuan S; Liu Q
    Comput Methods Programs Biomed; 2018 May; 158():161-171. PubMed ID: 29544782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posterior Choroidal Stroma Reduces Accuracy of Automated Segmentation of Outer Choroidal Boundary in Swept Source Optical Coherence Tomography.
    Chandrasekera E; Wong EN; Sampson DM; Alonso-Caneiro D; Chen FK
    Invest Ophthalmol Vis Sci; 2018 Sep; 59(11):4404-4412. PubMed ID: 30193311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. REAL-TIME FULL-DEPTH VISUALIZATION OF POSTERIOR OCULAR STRUCTURES: Comparison Between Full-Depth Imaging Spectral Domain Optical Coherence Tomography and Swept-Source Optical Coherence Tomography.
    Barteselli G; Bartsch DU; Weinreb RN; Camacho N; Nezgoda JT; Marvasti AH; Freeman WR
    Retina; 2016 Jun; 36(6):1153-61. PubMed ID: 26562563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated method for choroidal thickness measurement from Enhanced Depth Imaging Optical Coherence Tomography images.
    Hussain MA; Bhuiyan A; Ishikawa H; Theodore Smith R; Schuman JS; Kotagiri R
    Comput Med Imaging Graph; 2018 Jan; 63():41-51. PubMed ID: 29366655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Choroidal Layers in Normal Aging Eyes Using Enface Swept-Source Optical Coherence Tomography.
    Adhi M; Ferrara D; Mullins RF; Baumal CR; Mohler KJ; Kraus MF; Liu J; Badaro E; Alasil T; Hornegger J; Fujimoto JG; Duker JS; Waheed NK
    PLoS One; 2015; 10(7):e0133080. PubMed ID: 26172550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization.
    Meyer JH; Larsen PP; Strack C; Harmening WM; Krohne TU; Holz FG; Schmitz-Valckenberg S
    Exp Eye Res; 2019 Jul; 184():162-171. PubMed ID: 31002822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Features of choroidal naevi on swept source optical coherence tomography angiography and structural reverse flow optical coherence tomography.
    Ali ZC; Gray J; Balaskas K
    Graefes Arch Clin Exp Ophthalmol; 2018 Jul; 256(7):1319-1323. PubMed ID: 29520479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric Choroidal Segmentation Using Sequential Deep Learning Approach in High Myopia Subjects.
    Cahyo DAY; Wong DWK; Yow AP; Saw SM; Schmetterer L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1286-1289. PubMed ID: 33018223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Segmentation and Visualization of Choroid in OCT with Knowledge Infused Deep Learning.
    Zhang H; Yang J; Zhou K; Li F; Hu Y; Zhao Y; Zheng C; Zhang X; Liu J
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3408-3420. PubMed ID: 32931435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choroidal imaging using optical coherence tomography: techniques and interpretations.
    Sekiryu T
    Jpn J Ophthalmol; 2022 May; 66(3):213-226. PubMed ID: 35171356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated choroid segmentation in three-dimensional 1-μm wide-view OCT images with gradient and regional costs.
    Shi F; Tian B; Zhu W; Xiang D; Zhou L; Xu H; Chen X
    J Biomed Opt; 2016 Dec; 21(12):126017. PubMed ID: 28006046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images.
    Liu X; Bi L; Xu Y; Feng D; Kim J; Xu X
    Biomed Opt Express; 2019 Apr; 10(4):1601-1612. PubMed ID: 31061759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm.
    Mohler KJ; Draxinger W; Klein T; Kolb JP; Wieser W; Haritoglou C; Kampik A; Fujimoto JG; Neubauer AS; Huber R; Wolf A
    Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6284-93. PubMed ID: 26431482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
    Kugelman J; Alonso-Caneiro D; Chen Y; Arunachalam S; Huang D; Vallis N; Collins MJ; Chen FK
    Transl Vis Sci Technol; 2020 Oct; 9(11):12. PubMed ID: 33133774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of en face choroidal images obtained by optical coherent tomography by machine learning.
    Shiihara H; Sonoda S; Terasaki H; Kakiuchi N; Shinohara Y; Tomita M; Sakamoto T
    Jpn J Ophthalmol; 2018 Nov; 62(6):643-651. PubMed ID: 30293226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.