BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 31974555)

  • 1. Comprehensive identification of alternative back-splicing in human tissue transcriptomes.
    Zhang P; Zhang XO; Jiang T; Cai L; Huang X; Liu Q; Li D; Lu A; Liu Y; Xue W; Zhang P; Weng Z
    Nucleic Acids Res; 2020 Feb; 48(4):1779-1789. PubMed ID: 31974555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.
    Zhang XO; Dong R; Zhang Y; Zhang JL; Luo Z; Zhang J; Chen LL; Yang L
    Genome Res; 2016 Sep; 26(9):1277-87. PubMed ID: 27365365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the biogenesis and potential functions of exonic circular RNA.
    Ragan C; Goodall GJ; Shirokikh NE; Preiss T
    Sci Rep; 2019 Feb; 9(1):2048. PubMed ID: 30765711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs.
    Robic A; Faraut T; Djebali S; Weikard R; Feve K; Maman S; Kuehn C
    RNA Biol; 2019 Sep; 16(9):1190-1204. PubMed ID: 31120323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expanding regulatory mechanisms and cellular functions of circular RNAs.
    Chen LL
    Nat Rev Mol Cell Biol; 2020 Aug; 21(8):475-490. PubMed ID: 32366901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and expression levels of circular RNAs in progenitor cell types during mouse corticogenesis.
    Dori M; Haj Abdullah Alieh L; Cavalli D; Massalini S; Lesche M; Dahl A; Calegari F
    Life Sci Alliance; 2019 Apr; 2(2):. PubMed ID: 30926618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Functions of Circular RNAs.
    Cortés-López M; Miura P
    Yale J Biol Med; 2016 Dec; 89(4):527-537. PubMed ID: 28018143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells.
    Chuang TJ; Chen YJ; Chen CY; Mai TL; Wang YD; Yeh CS; Yang MY; Hsiao YT; Chang TH; Kuo TC; Cho HH; Shen CN; Kuo HC; Lu MY; Chen YH; Hsieh SC; Chiang TW
    Nucleic Acids Res; 2018 Apr; 46(7):3671-3691. PubMed ID: 29385530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse complementary matches simultaneously promote both back-splicing and exon-skipping.
    Cao D
    BMC Genomics; 2021 Aug; 22(1):586. PubMed ID: 34344317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs.
    Ottesen EW; Luo D; Seo J; Singh NN; Singh RN
    Nucleic Acids Res; 2019 Apr; 47(6):2884-2905. PubMed ID: 30698797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SRRM4 Expands the Repertoire of Circular RNAs by Regulating Microexon Inclusion.
    Conn VM; Gabryelska M; Marri S; Stringer BW; Ormsby RJ; Penn T; Poonnoose S; Kichenadasse G; Conn SJ
    Cells; 2020 Nov; 9(11):. PubMed ID: 33207694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes.
    Xin R; Gao Y; Gao Y; Wang R; Kadash-Edmondson KE; Liu B; Wang Y; Lin L; Xing Y
    Nat Commun; 2021 Jan; 12(1):266. PubMed ID: 33436621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Annotation of circRNAs and Their Alternative Back-Splicing/Splicing with CIRCexplorer Pipeline.
    Dong R; Ma XK; Chen LL; Yang L
    Methods Mol Biol; 2019; 1870():137-149. PubMed ID: 30539552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Biogenesis, Functions, and Challenges of Circular RNAs.
    Li X; Yang L; Chen LL
    Mol Cell; 2018 Aug; 71(3):428-442. PubMed ID: 30057200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Past, present, and future of circRNAs.
    Patop IL; Wüst S; Kadener S
    EMBO J; 2019 Aug; 38(16):e100836. PubMed ID: 31343080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased complexity of circRNA expression during species evolution.
    Dong R; Ma XK; Chen LL; Yang L
    RNA Biol; 2017 Aug; 14(8):1064-1074. PubMed ID: 27982734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Overview of Circular RNAs and Their Implications in Myotonic Dystrophy.
    Czubak K; Sedehizadeh S; Kozlowski P; Wojciechowska M
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interior circular RNA.
    Liu X; Hu Z; Zhou J; Tian C; Tian G; He M; Gao L; Chen L; Li T; Peng H; Zhang W
    RNA Biol; 2020 Jan; 17(1):87-97. PubMed ID: 31532701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons.
    Rahimi K; Venø MT; Dupont DM; Kjems J
    Nat Commun; 2021 Aug; 12(1):4825. PubMed ID: 34376658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.