These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31974665)
1. LC-MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions. Moro L; Da Ros A; da Mota RV; Purgatto E; Mattivi F; Arapitsas P Metabolomics; 2020 Jan; 16(2):18. PubMed ID: 31974665 [TBL] [Abstract][Full Text] [Related]
2. Effect of elicitors on the evolution of grape phenolic compounds during the ripening period. Gómez-Plaza E; Bautista-Ortín AB; Ruiz-García Y; Fernández-Fernández JI; Gil-Muñoz R J Sci Food Agric; 2017 Feb; 97(3):977-983. PubMed ID: 27235201 [TBL] [Abstract][Full Text] [Related]
3. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera. Andi SA; Gholami M; Ford CM; Maskani F J Photochem Photobiol B; 2019 Oct; 199():111625. PubMed ID: 31610430 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of Phenolic Compounds and Antioxidant Capacity during Berry Development in Black 'Isabel' Grape ( Kurt-Celebi A; Colak N; Hayirlioglu-Ayaz S; Kostadinović Veličkovska S; Ilieva F; Esatbeyoglu T; Ayaz FA Molecules; 2020 Aug; 25(17):. PubMed ID: 32847146 [TBL] [Abstract][Full Text] [Related]
5. Phytochemical profile of Brazilian grapes (Vitis labrusca and hybrids) grown on different rootstocks. da Silva MJR; Paiva APM; Souza JF; Padilha CVDS; Basílio LSP; Lima MDS; Pereira GE; Corrêa LC; Vianello F; Lima GPP; Moura MF; Tecchio MA PLoS One; 2022; 17(10):e0275489. PubMed ID: 36264899 [TBL] [Abstract][Full Text] [Related]
6. Application of Elicitors in Two Ripening Periods of Paladines-Quezada DF; Fernández-Fernández JI; Moreno-Olivares JD; Bleda-Sánchez JA; Gómez-Martínez JC; Martínez-Jiménez JA; Gil-Muñoz R Molecules; 2021 Mar; 26(6):. PubMed ID: 33802929 [TBL] [Abstract][Full Text] [Related]
7. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity. Nixdorf SL; Hermosín-Gutiérrez I Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126 [TBL] [Abstract][Full Text] [Related]
8. Methyl jasmonate foliar application to Tempranillo vineyard improved grape and wine phenolic content. Portu J; Santamaría P; López-Alfaro I; López R; Garde-Cerdán T J Agric Food Chem; 2015 Mar; 63(8):2328-37. PubMed ID: 25672964 [TBL] [Abstract][Full Text] [Related]
9. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC-DAD-ESI-MS/MS. Lago-Vanzela ES; Da-Silva R; Gomes E; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2011 Dec; 59(24):13136-46. PubMed ID: 22112247 [TBL] [Abstract][Full Text] [Related]
10. Elicitation with methyl jasmonate supported by precursor feeding with phenylalanine: Effect on Garnacha grape phenolic content. Portu J; López R; Santamaría P; Garde-Cerdán T Food Chem; 2017 Dec; 237():416-422. PubMed ID: 28764015 [TBL] [Abstract][Full Text] [Related]
11. Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors: methyl jasmonate versus benzothiadiazole. Ruiz-García Y; Romero-Cascales I; Gil-Muñoz R; Fernández-Fernández JI; López-Roca JM; Gómez-Plaza E J Agric Food Chem; 2012 Feb; 60(5):1283-90. PubMed ID: 22229261 [TBL] [Abstract][Full Text] [Related]
12. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. Cantos E; Espín JC; Tomás-Barberán FA J Agric Food Chem; 2002 Sep; 50(20):5691-6. PubMed ID: 12236700 [TBL] [Abstract][Full Text] [Related]
13. Climate effects on physicochemical composition of Syrah grapes at low and high altitude sites from tropical grown regions of Brazil. de Oliveira JB; Egipto R; Laureano O; de Castro R; Pereira GE; Ricardo-da-Silva JM Food Res Int; 2019 Jul; 121():870-879. PubMed ID: 31108820 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous detection of plant growth regulators jasmonic acid and methyl jasmonate in plant samples by a monoclonal antibody-based ELISA. Yi M; Zhao L; Wu K; Liu C; Deng D; Zhao K; Li J; Deng A Analyst; 2020 Jun; 145(11):4004-4011. PubMed ID: 32347240 [TBL] [Abstract][Full Text] [Related]
15. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. D'Onofrio C; Matarese F; Cuzzola A Food Chem; 2018 Mar; 242():352-361. PubMed ID: 29037700 [TBL] [Abstract][Full Text] [Related]
16. Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Nopo-Olazabal C; Condori J; Nopo-Olazabal L; Medina-Bolivar F Plant Physiol Biochem; 2014 Jan; 74():50-69. PubMed ID: 24269870 [TBL] [Abstract][Full Text] [Related]
17. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Portu J; López R; Baroja E; Santamaría P; Garde-Cerdán T Food Chem; 2016 Jun; 201():213-21. PubMed ID: 26868568 [TBL] [Abstract][Full Text] [Related]
18. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Razgonova M; Zakharenko A; Pikula K; Manakov Y; Ercisli S; Derbush I; Kislin E; Seryodkin I; Sabitov A; Kalenik T; Golokhvast K Molecules; 2021 Jun; 26(12):. PubMed ID: 34203808 [TBL] [Abstract][Full Text] [Related]
19. Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites. Amani S; Mohebodini M; Khademvatan S; Jafari M J Sci Food Agric; 2020 Mar; 100(5):2185-2197. PubMed ID: 31901132 [TBL] [Abstract][Full Text] [Related]
20. Characterization and quantification of anthocyanins in grape juices obtained from the grapes cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. Oh YS; Lee JH; Yoon SH; Oh CH; Choi DS; Choe E; Jung MY J Food Sci; 2008 Jun; 73(5):C378-89. PubMed ID: 18576983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]