These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31975172)

  • 1. Genomics of Long- and Short-Term Adaptation in Maize and Teosintes.
    Lorant A; Ross-Ibarra J; Tenaillon M
    Methods Mol Biol; 2020; 2090():289-311. PubMed ID: 31975172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation.
    Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X
    BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize.
    Aguirre-Liguori JA; Ramírez-Barahona S; Tiffin P; Eguiarte LE
    Proc Biol Sci; 2019 Jul; 286(1906):20190486. PubMed ID: 31290364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru.
    Vallebueno-Estrada M; Hernández-Robles GG; González-Orozco E; Lopez-Valdivia I; Rosales Tham T; Vásquez Sánchez V; Swarts K; Dillehay TD; Vielle-Calzada JP; Montiel R
    Elife; 2023 Apr; 12():. PubMed ID: 37070964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relevance of gene flow with wild relatives in understanding the domestication process.
    Moreno-Letelier A; Aguirre-Liguori JA; Piñero D; Vázquez-Lobo A; Eguiarte LE
    R Soc Open Sci; 2020 Apr; 7(4):191545. PubMed ID: 32431864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation.
    Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F
    Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential role of genetic assimilation during maize domestication.
    Lorant A; Pedersen S; Holst I; Hufford MB; Winter K; Piperno D; Ross-Ibarra J
    PLoS One; 2017; 12(9):e0184202. PubMed ID: 28886108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors.
    Maag D; Erb M; Bernal JS; Wolfender JL; Turlings TC; Glauser G
    PLoS One; 2015; 10(8):e0135722. PubMed ID: 26267478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecogeography of teosinte.
    Sánchez González JJ; Ruiz Corral JA; García GM; Ojeda GR; Larios LC; Holland JB; Medrano RM; García Romero GE
    PLoS One; 2018; 13(2):e0192676. PubMed ID: 29451888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight.
    Hufford MB; Martínez-Meyer E; Gaut BS; Eguiarte LE; Tenaillon MI
    PLoS One; 2012; 7(11):e47659. PubMed ID: 23155371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay of demography and selection during maize domestication and expansion.
    Wang L; Beissinger TM; Lorant A; Ross-Ibarra C; Ross-Ibarra J; Hufford MB
    Genome Biol; 2017 Nov; 18(1):215. PubMed ID: 29132403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting genomic patterns of local adaptation and niche suitability in teosintes.
    Aguirre-Liguori JA; Tenaillon MI; Vázquez-Lobo A; Gaut BS; Jaramillo-Correa JP; Montes-Hernandez S; Souza V; Eguiarte LE
    Mol Ecol; 2017 Aug; 26(16):4226-4240. PubMed ID: 28612956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline.
    Calfee E; Gates D; Lorant A; Perkins MT; Coop G; Ross-Ibarra J
    PLoS Genet; 2021 Oct; 17(10):e1009810. PubMed ID: 34634032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication.
    Wills DM; Fang Z; York AM; Holland JB; Doebley JF
    J Hered; 2018 Mar; 109(3):333-338. PubMed ID: 28992108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize domestication and gene interaction.
    Stitzer MC; Ross-Ibarra J
    New Phytol; 2018 Oct; 220(2):395-408. PubMed ID: 30035321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teosinte as a model system for population and ecological genomics.
    Hufford MB; Bilinski P; Pyhäjärvi T; Ross-Ibarra J
    Trends Genet; 2012 Dec; 28(12):606-15. PubMed ID: 23021022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication.
    Huang J; Gao Y; Jia H; Zhang Z
    Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe.
    Le Corre V; Siol M; Vigouroux Y; Tenaillon MI; Délye C
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25618-25627. PubMed ID: 32989136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome size variation in wild and cultivated maize along altitudinal gradients.
    Díez CM; Gaut BS; Meca E; Scheinvar E; Montes-Hernandez S; Eguiarte LE; Tenaillon MI
    New Phytol; 2013 Jul; 199(1):264-276. PubMed ID: 23550586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.