BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31975663)

  • 1. A Hybrid Approach for Sub-Acute Ischemic Stroke Lesion Segmentation Using Random Decision Forest and Gravitational Search Algorithm.
    Melingi SB; Vijayalakshmi V
    Curr Med Imaging Rev; 2019; 15(2):170-183. PubMed ID: 31975663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences.
    Maier O; Wilms M; von der Gablentz J; Krämer UM; Münte TF; Handels H
    J Neurosci Methods; 2015 Jan; 240():89-100. PubMed ID: 25448384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images.
    Subudhi A; Acharya UR; Dash M; Jena S; Sabut S
    Comput Biol Med; 2018 Dec; 103():116-129. PubMed ID: 30359807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-automated infarct segmentation from follow-up noncontrast CT scans in patients with acute ischemic stroke.
    Kuang H; Menon BK; Qiu W
    Med Phys; 2019 Sep; 46(9):4037-4045. PubMed ID: 31286534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke.
    Kim C; Zhu V; Obeid J; Lenert L
    PLoS One; 2019; 14(2):e0212778. PubMed ID: 30818342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation.
    Pereira S; Meier R; McKinley R; Wiest R; Alves V; Silva CA; Reyes M
    Med Image Anal; 2018 Feb; 44():228-244. PubMed ID: 29289703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images.
    Geremia E; Clatz O; Menze BH; Konukoglu E; Criminisi A; Ayache N
    Neuroimage; 2011 Jul; 57(2):378-90. PubMed ID: 21497655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT.
    Qiu W; Kuang H; Teleg E; Ospel JM; Sohn SI; Almekhlafi M; Goyal M; Hill MD; Demchuk AM; Menon BK
    Radiology; 2020 Mar; 294(3):638-644. PubMed ID: 31990267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.
    Şener E; Mumcuoglu EU; Hamcan S
    Comput Methods Programs Biomed; 2016 Feb; 124():31-44. PubMed ID: 26574298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI.
    Subudhi A; Jena S; Sabut S
    Med Biol Eng Comput; 2018 May; 56(5):795-807. PubMed ID: 28948480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial decision forests for MS lesion segmentation in multi-channel MR images.
    Geremia E; Menze BH; Clatz O; Konukoglu E; Criminisi A; Ayache N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):111-8. PubMed ID: 20879221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifiers for Ischemic Stroke Lesion Segmentation: A Comparison Study.
    Maier O; Schröder C; Forkert ND; Martinetz T; Handels H
    PLoS One; 2015; 10(12):e0145118. PubMed ID: 26672989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLAIR lesion segmentation: application in patients with brain tumors and acute ischemic stroke.
    Artzi M; Aizenstein O; Jonas-Kimchi T; Myers V; Hallevi H; Ben Bashat D
    Eur J Radiol; 2013 Sep; 82(9):1512-8. PubMed ID: 23796882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ischemic stroke lesion segmentation using stacked sparse autoencoder.
    Praveen GB; Agrawal A; Sundaram P; Sardesai S
    Comput Biol Med; 2018 Aug; 99():38-52. PubMed ID: 29883752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features.
    Park SH; Zong X; Gao Y; Lin W; Shen D
    Neuroimage; 2016 Jul; 134():223-235. PubMed ID: 27046107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energy minimization method for MS lesion segmentation from T1-w and FLAIR images.
    Zhao Y; Guo S; Luo M; Liu Y; Bilello M; Li C
    Magn Reson Imaging; 2017 Jun; 39():1-6. PubMed ID: 27343952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of perfusion- and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis.
    Zivadinov R; Bergsland N; Stosic M; Sharma J; Nussenbaum F; Durfee J; Hani N; Abdelrahman N; Jaisani Z; Minagar A; Hoque R; Munschauer FE; Dwyer MG
    Neurol Res; 2008 Oct; 30(8):816-26. PubMed ID: 18826808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust generative asymmetric GMM for brain MR image segmentation.
    Ji Z; Xia Y; Zheng Y
    Comput Methods Programs Biomed; 2017 Nov; 151():123-138. PubMed ID: 28946994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.