BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31975744)

  • 1. Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics.
    Karabelas E; Haase G; Plank G; Augustin CM
    Comput Mech; 2020 Jan; 65(1):193-215. PubMed ID: 31975744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity.
    Karabelas E; Gsell MAF; Haase G; Plank G; Augustin CM
    Comput Methods Appl Mech Eng; 2022 May; 394():114887. PubMed ID: 35432634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.
    Hadjicharalambous M; Lee J; Smith NP; Nordsletten DA
    Comput Methods Appl Mech Eng; 2014 Jun; 274(100):213-236. PubMed ID: 25187672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy-stable mixed formulation for isogeometric analysis of incompressible hyper-elastodynamics.
    Liu J; Marsden AL; Tao Z
    Int J Numer Methods Eng; 2019 Nov; 120(8):937-963. PubMed ID: 32981972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified three-dimensional finite elements for large strain analysis of compressible and nearly incompressible solids.
    Pagani A; Chiaia P; Filippi M; Cinefra M
    Mech Adv Mat Struct; 2024; 31(1):117-137. PubMed ID: 38235485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stabilized finite element method for finite-strain three-field poroelasticity.
    Berger L; Bordas R; Kay D; Tavener S
    Comput Mech; 2017; 60(1):51-68. PubMed ID: 32025072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-locking Tetrahedral Finite Element for Surgical Simulation.
    Joldes GR; Wittek A; Miller K
    Commun Numer Methods Eng; 2009 Jul; 25(7):827-836. PubMed ID: 26113786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1998; 1(2):151-170. PubMed ID: 11264802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite Element Framework for Computational Fluid Dynamics in FEBio.
    Ateshian GA; Shim JJ; Maas SA; Weiss JA
    J Biomech Eng; 2018 Feb; 140(2):0210011-02100117. PubMed ID: 29238817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of different variants of the Uzawa algorithm in problems of the theory of elasticity for incompressible materials.
    Styopin NE; Vershinin AV; Zingerman KM; Levin VA
    J Adv Res; 2016 Sep; 7(5):703-7. PubMed ID: 27595019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Unified Determinant-Preserving Formulation for Compressible/Incompressible Finite Viscoelasticity.
    Wijaya IPA; Lopez-Pamies O; Masud A
    J Mech Phys Solids; 2023 Aug; 177():. PubMed ID: 37724292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparsity regularization in dynamic elastography.
    Honarvar M; Sahebjavaher RS; Salcudean SE; Rohling R
    Phys Med Biol; 2012 Oct; 57(19):5909-27. PubMed ID: 22955065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
    Maas SA; Ellis BJ; Rawlins DS; Weiss JA
    J Biomech; 2016 Mar; 49(5):659-667. PubMed ID: 26900037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving the Incompressible Surface Stokes Equation by Standard Velocity-Correction Projection Methods.
    Zhao Y; Feng X
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling.
    Peirlinck M; De Beule M; Segers P; Rebelo N
    J Mech Behav Biomed Mater; 2018 Sep; 85():124-133. PubMed ID: 29886406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.