These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31976634)

  • 1. Soft and Ion-Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels.
    Jia M; Rolandi M
    Adv Healthc Mater; 2020 Mar; 9(5):e1901372. PubMed ID: 31976634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conducting polymer-based nanostructured materials for brain-machine interfaces.
    Ziai Y; Zargarian SS; Rinoldi C; Nakielski P; Sola A; Lanzi M; Truong YB; Pierini F
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1895. PubMed ID: 37141863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated Polymers in Bioelectronics.
    Inal S; Rivnay J; Suiu AO; Malliaras GG; McCulloch I
    Acc Chem Res; 2018 Jun; 51(6):1368-1376. PubMed ID: 29874033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural biopolymers as proton conductors in bioelectronics.
    Jia M; Kim J; Nguyen T; Duong T; Rolandi M
    Biopolymers; 2021 Jul; 112(7):e23433. PubMed ID: 34022064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials.
    Lee S; Ozlu B; Eom T; Martin DC; Shim BS
    Biosens Bioelectron; 2020 Dec; 170():112620. PubMed ID: 33035903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring.
    Hua J; Su M; Sun X; Li J; Sun Y; Qiu H; Shi Y; Pan L
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterial-based biohybrid hydrogel in bioelectronics.
    Shin M; Lim J; An J; Yoon J; Choi JW
    Nano Converg; 2023 Feb; 10(1):8. PubMed ID: 36763293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation.
    Tang H; Li Y; Liao S; Liu H; Qiao Y; Zhou J
    Adv Healthc Mater; 2024 Sep; 13(22):e2400562. PubMed ID: 38773929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-Like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation.
    Han M; Yildiz E; Kaleli HN; Karaz S; Eren GO; Dogru-Yuksel IB; Senses E; Şahin A; Nizamoglu S
    Adv Healthc Mater; 2022 Apr; 11(8):e2102160. PubMed ID: 34969168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics.
    Jia L; Li Y; Ren A; Xiang T; Zhou S
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):32887-32905. PubMed ID: 38904545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic bioelectronics for electronic-to-chemical translation in modulation of neuronal signaling and machine-to-brain interfacing.
    Larsson KC; Kjäll P; Richter-Dahlfors A
    Biochim Biophys Acta; 2013 Sep; 1830(9):4334-44. PubMed ID: 23220700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic bioelectronics in medicine.
    Löffler S; Melican K; Nilsson KPR; Richter-Dahlfors A
    J Intern Med; 2017 Jul; 282(1):24-36. PubMed ID: 28181720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic Bioelectronics: Materials and Biocompatibility.
    Feron K; Lim R; Sherwood C; Keynes A; Brichta A; Dastoor PC
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30104515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wafer-Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics.
    Kleber C; Lienkamp K; Rühe J; Asplund M
    Adv Biosyst; 2019 Aug; 3(8):e1900072. PubMed ID: 32648703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook.
    Saghir S; Imenes K; Schiavone G
    Front Bioeng Biotechnol; 2023; 11():1150147. PubMed ID: 37034261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel-Tissue Interface Interactions for Implantable Flexible Bioelectronics.
    Cong Y; Fu J
    Langmuir; 2022 Sep; 38(38):11503-11513. PubMed ID: 36113043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel bioelectronics.
    Yuk H; Lu B; Zhao X
    Chem Soc Rev; 2019 Mar; 48(6):1642-1667. PubMed ID: 30474663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure Conducting Polymer Hydrogels Increase Signal-to-Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance.
    Roubert Martinez S; Le Floch P; Liu J; Howe RD
    Adv Healthc Mater; 2023 Jul; 12(17):e2202661. PubMed ID: 36867669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.