These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31976649)

  • 1. Nanopore Passport Control for Substrate-Specific Translocation.
    Vikraman D; Satheesan R; Kumar KS; Mahendran KR
    ACS Nano; 2020 Feb; 14(2):2285-2295. PubMed ID: 31976649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Translocation of Cyclic Sugars through Dynamic Bacterial Transporter.
    Vikraman D; Satheesan R; Rajendran M; Kumar NA; Johnson JB; R SK; Mahendran KR
    ACS Sens; 2022 Jun; 7(6):1766-1776. PubMed ID: 35671512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic Filtering of Polypeptides Through Membrane Protein Pores.
    Vikraman D; Krishnan R S; Satheesan R; Das AD; Mahendran KR
    Chem Asian J; 2022 Dec; 17(24):e202200891. PubMed ID: 36325993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
    Bhamidimarri SP; Prajapati JD; van den Berg B; Winterhalter M; Kleinekathöfer U
    Biophys J; 2016 Feb; 110(3):600-611. PubMed ID: 26840725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Interactions of Cyclic Oligosaccharides with Hetero-Oligomeric Nanopores: Kinetics of Binding and Release at the Single-Molecule Level.
    Satheesan R; R SK; Mahendran KR
    Small; 2018 Aug; 14(32):e1801192. PubMed ID: 30009552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational flexibility driving charge-selective substrate translocation across a bacterial transporter.
    Vikraman D; Majumdar BB; Sk S; Weichbrodt C; Fertig N; Winterhalter M; Mondal J; Mahendran KR
    Chem Sci; 2024 Jun; 15(24):9333-9344. PubMed ID: 38903220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing PEGylated Peptide Conformations Using a Protein Nanopore.
    Satheesan R; Vikraman D; Jayan P; Vijayan V; Chimerel C; Mahendran KR
    Nano Lett; 2024 Mar; 24(12):3566-3574. PubMed ID: 38316144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic α-Helical Nanopore Reactor for Chemical Sensing.
    Das AD; K V; S SD; Mahendran KR
    JACS Au; 2023 Sep; 3(9):2467-2477. PubMed ID: 37772177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed alpha-helical barrels for charge-selective peptide translocation.
    R SK; Puthumadathil N; Shaji AH; Santhosh Kumar K; Mohan G; Mahendran KR
    Chem Sci; 2020 Nov; 12(2):639-649. PubMed ID: 34163795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Nanopore-Based Recognition of Protein Translocation Success.
    Hoogerheide DP; Gurnev PA; Rostovtseva TK; Bezrukov SM
    Biophys J; 2018 Feb; 114(4):772-776. PubMed ID: 29338842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionally Active Synthetic α-Helical Pores.
    Krishnan R S; Firzan Ca N; Mahendran KR
    Acc Chem Res; 2024 Jul; 57(13):1790-1802. PubMed ID: 38875523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling DNA translocation through gate modulation of nanopore wall surface charges.
    He Y; Tsutsui M; Fan C; Taniguchi M; Kawai T
    ACS Nano; 2011 Jul; 5(7):5509-18. PubMed ID: 21662982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores
    Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation study on the translocation of polyelectrolyte through conical nanopores.
    Sun LZ; Li H; Xu X; Luo MB
    J Phys Condens Matter; 2018 Dec; 30(49):495101. PubMed ID: 30431017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores.
    Liu Z; Shi X; Wu H
    Nanotechnology; 2019 Apr; 30(16):165701. PubMed ID: 30634172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Peptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from Klebsiella Oxytoca*.
    Pangeni S; Prajapati JD; Bafna J; Nilam M; Nau WM; Kleinekathöfer U; Winterhalter M
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8089-8094. PubMed ID: 33580541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
    Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S
    J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.