These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31976649)

  • 21. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.
    Di Fiori N; Squires A; Bar D; Gilboa T; Moustakas TD; Meller A
    Nat Nanotechnol; 2013 Dec; 8(12):946-51. PubMed ID: 24185943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Langevin dynamcis simulations of driven polymer translocation into a cross-linked gel.
    Sean D; Slater GW
    Electrophoresis; 2017 Mar; 38(5):653-658. PubMed ID: 28059440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrically facilitated translocation of protein through solid nanopore.
    Wu L; Liu H; Zhao W; Wang L; Hou C; Liu Q; Lu Z
    Nanoscale Res Lett; 2014 Mar; 9(1):140. PubMed ID: 24661490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore.
    Baaken G; Halimeh I; Bacri L; Pelta J; Oukhaled A; Behrends JC
    ACS Nano; 2015 Jun; 9(6):6443-9. PubMed ID: 26028280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling DNA Tug-of-War in a Dual Nanopore Device.
    Liu X; Zhang Y; Nagel R; Reisner W; Dunbar WB
    Small; 2019 Jul; 15(30):e1901704. PubMed ID: 31192541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner.
    Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage.
    Lin CY; Turker Acar E; Polster JW; Lin K; Hsu JP; Siwy ZS
    ACS Nano; 2019 Sep; 13(9):9868-9879. PubMed ID: 31348640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence of unfolded protein translocation through a protein nanopore.
    Pastoriza-Gallego M; Breton MF; Discala F; Auvray L; Betton JM; Pelta J
    ACS Nano; 2014 Nov; 8(11):11350-60. PubMed ID: 25380310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gate-Voltage-Controlled Threading DNA into Transistor Nanopores.
    Kato Y; Sakashita N; Ishida K; Mitsui T
    J Phys Chem B; 2018 Jan; 122(2):827-833. PubMed ID: 28893067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Pore Formation and Protein Translocation Using Large Biological Nanopores.
    Watanabe H; Gubbiotti A; Chinappi M; Takai N; Tanaka K; Tsumoto K; Kawano R
    Anal Chem; 2017 Nov; 89(21):11269-11277. PubMed ID: 28980803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the Effective Conductance Drop Due to a Particle in a Solid State Nanopore Towards Optimized Design.
    Das N; Ropmay GD; Joseph AM; RoyChaudhuri C
    IEEE Trans Nanobioscience; 2020 Oct; 19(4):598-608. PubMed ID: 32780701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Charge Density-Dependent DNA Capture through Polymer Planar Nanopores.
    Jia Z; Choi J; Park S
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40927-40937. PubMed ID: 30371050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.
    Bafna JA; Soni GV
    PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical unfolding of cytochrome
    Tripathi P; Benabbas A; Mehrafrooz B; Yamazaki H; Aksimentiev A; Champion PM; Wanunu M
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33883276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS
    Nicolaï A; Barrios Pérez MD; Delarue P; Meunier V; Drndić M; Senet P
    J Phys Chem B; 2019 Mar; 123(10):2342-2353. PubMed ID: 30768898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.