These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31976649)

  • 61. Investigating the translocation of lambda-DNA molecules through PDMS nanopores.
    Sen YH; Karnik R
    Anal Bioanal Chem; 2009 May; 394(2):437-46. PubMed ID: 19050856
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation.
    Zhang M; Schmidt T; Jemt A; Sahlén P; Sychugov I; Lundeberg J; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314002. PubMed ID: 26180050
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Translocation of DNA and protein through a sequentially polymerized polyurea nanopore.
    Kim HJ; Choi UJ; Kim H; Lee K; Park KB; Kim HM; Kwak DK; Chi SW; Lee JS; Kim KB
    Nanoscale; 2019 Jan; 11(2):444-453. PubMed ID: 30398270
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of single nanoparticle-nanopore interaction strength on ionic current modulation.
    Pal S; Ramkumar B; Jugade S; Rao A; Naik A; Chakraborty B; Varma MM
    Sens Actuators B Chem; 2020 Dec; 325():. PubMed ID: 34321714
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores.
    Asandei A; Chinappi M; Lee JK; Ho Seo C; Mereuta L; Park Y; Luchian T
    Sci Rep; 2015 Jun; 5():10419. PubMed ID: 26029865
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Polymer capture by electro-osmotic flow of oppositely charged nanopores.
    Wong CT; Muthukumar M
    J Chem Phys; 2007 Apr; 126(16):164903. PubMed ID: 17477630
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Catalyzing the translocation of polypeptides through attractive interactions.
    Wolfe AJ; Mohammad MM; Cheley S; Bayley H; Movileanu L
    J Am Chem Soc; 2007 Nov; 129(45):14034-41. PubMed ID: 17949000
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of Single Nucleotides by a Tiny Charged Solid-State Nanopore.
    Yang H; Li Z; Si W; Lin K; Ma J; Li K; Sun L; Sha J; Chen Y
    J Phys Chem B; 2018 Aug; 122(32):7929-7935. PubMed ID: 30047733
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Modeling the selective partitioning of cations into negatively charged nanopores in water.
    Yang L; Garde S
    J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment.
    Ali M; Yameen B; Cervera J; Ramírez P; Neumann R; Ensinger W; Knoll W; Azzaroni O
    J Am Chem Soc; 2010 Jun; 132(24):8338-48. PubMed ID: 20518503
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Counting and dynamic studies of the small unilamellar phospholipid vesicle translocation with single conical glass nanopores.
    Chen L; He H; Jin Y
    Anal Chem; 2015 Jan; 87(1):522-9. PubMed ID: 25489990
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of charge distribution on the translocation of an inhomogeneously charged polymer through a nanopore.
    Mohan A; Kolomeisky AB; Pasquali M
    J Chem Phys; 2008 Mar; 128(12):125104. PubMed ID: 18376979
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Smooth DNA transport through a narrowed pore geometry.
    Carson S; Wilson J; Aksimentiev A; Wanunu M
    Biophys J; 2014 Nov; 107(10):2381-93. PubMed ID: 25418307
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanopore translocation dynamics of a single DNA-bound protein.
    Spiering A; Getfert S; Sischka A; Reimann P; Anselmetti D
    Nano Lett; 2011 Jul; 11(7):2978-82. PubMed ID: 21667921
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electromechanical Signatures for DNA Sequencing through a Mechanosensitive Nanopore.
    Farimani AB; Heiranian M; Aluru NR
    J Phys Chem Lett; 2015 Feb; 6(4):650-7. PubMed ID: 26262481
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Beyond nanopore sizing: improving solid-state single-molecule sensing performance, lifetime, and analyte scope for omics by targeting surface chemistry during fabrication.
    D Y Bandara YMN; Saharia J; Karawdeniya BI; Hagan JT; Dwyer JR; Kim MJ
    Nanotechnology; 2020 Aug; 31(33):335707. PubMed ID: 32357346
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore.
    Hyun C; Kaur H; Huang T; Li J
    Rev Sci Instrum; 2017 Feb; 88(2):025001. PubMed ID: 28249506
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Translocation of flexible and tensioned ssDNA through
    Rattu P; Belzunces B; Haynes T; Skylaris CK; Khalid S
    Nanoscale; 2021 Jan; 13(3):1673-1679. PubMed ID: 33434242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.