These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31976684)

  • 21. Coupling a Single Trapped Atom to a Whispering-Gallery-Mode Microresonator.
    Will E; Masters L; Rauschenbeutel A; Scheucher M; Volz J
    Phys Rev Lett; 2021 Jun; 126(23):233602. PubMed ID: 34170158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime.
    Ishida N; Byrnes T; Nori F; Yamamoto Y
    Sci Rep; 2013; 3():1180. PubMed ID: 23378913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling.
    Schneeweiss P; Zeiger S; Hoinkes T; Rauschenbeutel A; Volz J
    Opt Lett; 2017 Jan; 42(1):85-88. PubMed ID: 28059184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels.
    Kang S; Choi Y; Lim S; Kim W; Kim JR; Lee JH; An K
    Opt Express; 2010 Apr; 18(9):9286-302. PubMed ID: 20588776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide.
    Bose R; Sridharan D; Solomon GS; Waks E
    Opt Express; 2011 Mar; 19(6):5398-409. PubMed ID: 21445179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity.
    Abdurakhimov LV; Yamashiro R; Badrutdinov AO; Konstantinov D
    Phys Rev Lett; 2016 Jul; 117(5):056803. PubMed ID: 27517786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics.
    Keloth J; Nayak KP; Hakuta K
    Opt Lett; 2017 Mar; 42(5):1003-1006. PubMed ID: 28248346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal mode splitting and mechanical effects of an optical lattice in a ring cavity.
    Klinner J; Lindholdt M; Nagorny B; Hemmerich A
    Phys Rev Lett; 2006 Jan; 96(2):023002. PubMed ID: 16486567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the number of atoms trapped in an optical cavity.
    McKeever J; Buck JR; Boozer AD; Kimble HJ
    Phys Rev Lett; 2004 Oct; 93(14):143601. PubMed ID: 15524790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion.
    Walker T; Miyanishi K; Ikuta R; Takahashi H; Vartabi Kashanian S; Tsujimoto Y; Hayasaka K; Yamamoto T; Imoto N; Keller M
    Phys Rev Lett; 2018 May; 120(20):203601. PubMed ID: 29864312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced ion-cavity coupling through cavity cooling in the strong coupling regime.
    Christoforou C; Pignot C; Kassa E; Takahashi H; Keller M
    Sci Rep; 2020 Sep; 10(1):15693. PubMed ID: 32973298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities.
    Yang X; Özdemir ŞK; Peng B; Yilmaz H; Lei FC; Long GL; Yang L
    Opt Express; 2015 Nov; 23(23):29573-83. PubMed ID: 26698440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear valley phonon scattering under the strong coupling regime.
    Liu X; Yi J; Yang S; Lin EC; Zhang YJ; Zhang P; Li JF; Wang Y; Lee YH; Tian ZQ; Zhang X
    Nat Mater; 2021 Sep; 20(9):1210-1215. PubMed ID: 33846584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time path-integral approach for dissipative quantum dot-cavity quantum electrodynamics: impure dephasing-induced effects.
    Nahri DG; Mathkoor FH; Raymond Ooi CH
    J Phys Condens Matter; 2017 Feb; 29(5):055701. PubMed ID: 27966466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracavity cold atomic ensemble with high optical depth.
    Jiang Y; Mei Y; Zou Y; Zuo Y; Du S
    Rev Sci Instrum; 2019 Jan; 90(1):013105. PubMed ID: 30709165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
    Carmele A; Kabuss J; Schulze F; Reitzenstein S; Knorr A
    Phys Rev Lett; 2013 Jan; 110(1):013601. PubMed ID: 23383788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.