These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31976784)

  • 1. Sustained effects of resistant starch on the expression of genes related to carbohydrate digestion/absorption in the small intestine.
    Rosas-Pérez AM; Honma K; Goda T
    Int J Food Sci Nutr; 2020 Aug; 71(5):572-580. PubMed ID: 31976784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of the small intestine to induced maldigestion in rats. Experimental pancreatic atrophy and acarbose feeding.
    Creutzfeldt W; Fölsch UR; Elsenhans B; Ballmann M; Conlon JM
    Scand J Gastroenterol Suppl; 1985; 112():45-53. PubMed ID: 3892654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylation of histone H3 at lysine 4 and expression of the maltase-glucoamylase gene are reduced by dietary resistant starch.
    Shimada M; Mochizuki K; Goda T
    J Nutr Biochem; 2013 Mar; 24(3):606-12. PubMed ID: 22819554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].
    Huang W; Liu R; Guo W; Wei N; Qiang O; Li X; Ou Y; Tang C
    Wei Sheng Yan Jiu; 2012 Nov; 41(6):878-82. PubMed ID: 23424860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jejunal induction of SI and SGLT1 genes in rats by high-starch/low-fat diet is associated with histone acetylation and binding of GCN5 on the genes.
    Inoue S; Mochizuki K; Goda T
    J Nutr Sci Vitaminol (Tokyo); 2011; 57(2):162-9. PubMed ID: 21697636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of histone H3K4 methylation at the promoter, enhancer, and transcribed regions of the Si and Sglt1 genes in rat jejunum in response to a high-starch/low-fat diet.
    Inoue S; Honma K; Mochizuki K; Goda T
    Nutrition; 2015 Feb; 31(2):366-72. PubMed ID: 25592016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.
    Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K
    J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeding rats dietary resistant starch shifts the peak of SGLT1 gene expression and histone H3 acetylation on the gene from the upper jejunum toward the ileum.
    Shimada M; Mochizuki K; Goda T
    J Agric Food Chem; 2009 Sep; 57(17):8049-55. PubMed ID: 19722712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis.
    Diaz-Sotomayor M; Quezada-Calvillo R; Avery SE; Chacko SK; Yan LK; Lin AH; Ao ZH; Hamaker BR; Nichols BL
    J Pediatr Gastroenterol Nutr; 2013 Dec; 57(6):704-12. PubMed ID: 23838818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the expression of carbohydrate digestion/absorption-related genes.
    Goda T
    Br J Nutr; 2000 Dec; 84 Suppl 2():S245-8. PubMed ID: 11242478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible effects of dietary polyphenols on sugar absorption and digestion.
    Williamson G
    Mol Nutr Food Res; 2013 Jan; 57(1):48-57. PubMed ID: 23180627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit.
    Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR
    PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditioning with slowly digestible starch diets in mice reduces jejunal α-glucosidase activity and glucogenesis from a digestible starch feeding.
    Hasek LY; Avery SE; Chacko SK; Fraley JK; Vohra FA; Quezada-Calvillo R; Nichols BL; Hamaker BR
    Nutrition; 2020 Oct; 78():110857. PubMed ID: 32599415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive response of equine intestinal Na+/glucose co-transporter (SGLT1) to an increase in dietary soluble carbohydrate.
    Dyer J; Al-Rammahi M; Waterfall L; Salmon KS; Geor RJ; Bouré L; Edwards GB; Proudman CJ; Shirazi-Beechey SP
    Pflugers Arch; 2009 Jun; 458(2):419-30. PubMed ID: 19048283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary resistant starch reduces histone acetylation on the glucose-dependent insulinotropic polypeptide gene in the jejunum.
    Shimada M; Mochizuki K; Goda T
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2754-7. PubMed ID: 19966471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose.
    Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Baker SS; Nichols BL
    J Pediatr Gastroenterol Nutr; 2007 Jul; 45(1):32-43. PubMed ID: 17592362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release.
    Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR
    J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of small-intestinal sugar absorption mediated by sodium orthovanadate Na3VO4 in rats and its mechanisms.
    Ai J; Du J; Wang N; Du ZM; Yang BF
    World J Gastroenterol; 2004 Dec; 10(24):3612-5. PubMed ID: 15534916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Regulations of Mucosal Maltase Expressions.
    Goda T; Honma K
    J Pediatr Gastroenterol Nutr; 2018 Jun; 66 Suppl 3():S14-S17. PubMed ID: 29762370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of hardly digestive starch granules on sucrase and isomaltase in small intestinal mucosa of rats.
    Fujita S; Fuwa H
    J Nutr Sci Vitaminol (Tokyo); 1984 Apr; 30(2):135-42. PubMed ID: 6470831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.